Your browser doesn't support javascript.
loading
One-Dimensional Fluorescent Silicon Nanorods Featuring Ultrahigh Photostability, Favorable Biocompatibility, and Excitation Wavelength-Dependent Emission Spectra.
Song, Bin; Zhong, Yiling; Wu, Sicong; Chu, Binbin; Su, Yuanyuan; He, Yao.
Afiliación
  • Song B; Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano & Soft Materials (FUNSOM), and Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University , Suzhou, Jiangsu 215123, China.
  • Zhong Y; Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano & Soft Materials (FUNSOM), and Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University , Suzhou, Jiangsu 215123, China.
  • Wu S; Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano & Soft Materials (FUNSOM), and Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University , Suzhou, Jiangsu 215123, China.
  • Chu B; Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano & Soft Materials (FUNSOM), and Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University , Suzhou, Jiangsu 215123, China.
  • Su Y; Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano & Soft Materials (FUNSOM), and Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University , Suzhou, Jiangsu 215123, China.
  • He Y; Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano & Soft Materials (FUNSOM), and Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University , Suzhou, Jiangsu 215123, China.
J Am Chem Soc ; 138(14): 4824-31, 2016 Apr 13.
Article en En | MEDLINE | ID: mdl-27010956
ABSTRACT
We herein report a kind of one-dimensional biocompatible fluorescent silicon nanorods (SiNRs) with tunable lengths ranging ∼100-250 nm, which can be facilely prepared through one-pot microwave synthesis. In addition to the strong fluorescence (quantum yield value ∼15%) and negligible toxicity, the resultant SiNRs exhibit excitation wavelength-dependent photoluminescence whose maximum emission wavelength ranges from ∼450 to ∼600 nm under serial excitation wavelengths from 390 to 560 nm, providing feasibility for multicolor biological imaging. More significantly, the SiNRs are ultrahighly photostable, preserving strong and nearly unchanged fluorescence under 400 min high-power UV irradiation, which is in sharp contrast to severe fluorescence quenching of organic dyes (e.g., FITC) or II-VI quantum dots (QDs) (e.g., CdTe QDs and CdSe/ZnS QDs) within 15 or 160 min UV treatment under the same experiment conditions, respectively. Taking advantage of these attractive merits, we further exploit the SiNRs as a novel type of color converters for the construction of white light-emitting diodes (LED), which is the first proof-of-concept demonstration of LED device fabricated using the one-dimensional fluorescent silicon nanostructures.

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: J Am Chem Soc Año: 2016 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: J Am Chem Soc Año: 2016 Tipo del documento: Article País de afiliación: China