Your browser doesn't support javascript.
loading
Crystal Structure of an Ammonia-Permeable Aquaporin.
Kirscht, Andreas; Kaptan, Shreyas S; Bienert, Gerd Patrick; Chaumont, François; Nissen, Poul; de Groot, Bert L; Kjellbom, Per; Gourdon, Pontus; Johanson, Urban.
Afiliación
  • Kirscht A; Department of Biochemistry and Structural Biology, Center for Molecular Protein Science, Lund University, Lund, Sweden.
  • Kaptan SS; The Max Planck Institute for Biophysical Chemistry, Computational Biomolecular Dynamics Group, Göttingen, Germany.
  • Bienert GP; Institut des Sciences de la Vie, Université catholique de Louvain, Louvain-la-Neuve, Belgium.
  • Chaumont F; IPK-Leibniz Institute of Plant Genetics and Crop Plant Research Department of Physiology and Cell Biology, Gatersleben, Germany.
  • Nissen P; Institut des Sciences de la Vie, Université catholique de Louvain, Louvain-la-Neuve, Belgium.
  • de Groot BL; Danish Research Institute of Translational Neuroscience-DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, Denmark.
  • Kjellbom P; The Max Planck Institute for Biophysical Chemistry, Computational Biomolecular Dynamics Group, Göttingen, Germany.
  • Gourdon P; Department of Biochemistry and Structural Biology, Center for Molecular Protein Science, Lund University, Lund, Sweden.
  • Johanson U; Danish Research Institute of Translational Neuroscience-DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, Denmark.
PLoS Biol ; 14(3): e1002411, 2016 Mar.
Article en En | MEDLINE | ID: mdl-27028365
ABSTRACT
Aquaporins of the TIP subfamily (Tonoplast Intrinsic Proteins) have been suggested to facilitate permeation of water and ammonia across the vacuolar membrane of plants, allowing the vacuole to efficiently sequester ammonium ions and counteract cytosolic fluctuations of ammonia. Here, we report the structure determined at 1.18 Å resolution from twinned crystals of Arabidopsis thaliana aquaporin AtTIP2;1 and confirm water and ammonia permeability of the purified protein reconstituted in proteoliposomes as further substantiated by molecular dynamics simulations. The structure of AtTIP2;1 reveals an extended selectivity filter with the conserved arginine of the filter adopting a unique unpredicted position. The relatively wide pore and the polar nature of the selectivity filter clarify the ammonia permeability. By mutational studies, we show that the identified determinants in the extended selectivity filter region are sufficient to convert a strictly water-specific human aquaporin into an AtTIP2;1-like ammonia channel. A flexible histidine and a novel water-filled side pore are speculated to deprotonate ammonium ions, thereby possibly increasing permeation of ammonia. The molecular understanding of how aquaporins facilitate ammonia flux across membranes could potentially be used to modulate ammonia losses over the plasma membrane to the atmosphere, e.g., during photorespiration, and thereby to modify the nitrogen use efficiency of plants.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Acuaporinas / Proteínas de Arabidopsis / Amoníaco Idioma: En Revista: PLoS Biol Asunto de la revista: BIOLOGIA Año: 2016 Tipo del documento: Article País de afiliación: Suecia

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Acuaporinas / Proteínas de Arabidopsis / Amoníaco Idioma: En Revista: PLoS Biol Asunto de la revista: BIOLOGIA Año: 2016 Tipo del documento: Article País de afiliación: Suecia