Your browser doesn't support javascript.
loading
A multi-modal parcellation of human cerebral cortex.
Glasser, Matthew F; Coalson, Timothy S; Robinson, Emma C; Hacker, Carl D; Harwell, John; Yacoub, Essa; Ugurbil, Kamil; Andersson, Jesper; Beckmann, Christian F; Jenkinson, Mark; Smith, Stephen M; Van Essen, David C.
Afiliación
  • Glasser MF; Department of Neuroscience, Washington University Medical School, Saint Louis, Missouri 63110, USA.
  • Coalson TS; Department of Neuroscience, Washington University Medical School, Saint Louis, Missouri 63110, USA.
  • Robinson EC; FMRIB centre, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK.
  • Hacker CD; Department of Computing, Imperial College, London SW7 2AZ, UK.
  • Harwell J; Department of Biomedical Engineering, Washington University, Saint Louis, Missouri 63110, USA.
  • Yacoub E; Department of Neuroscience, Washington University Medical School, Saint Louis, Missouri 63110, USA.
  • Ugurbil K; Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, Minnesota 55455, USA.
  • Andersson J; Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, Minnesota 55455, USA.
  • Beckmann CF; FMRIB centre, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK.
  • Jenkinson M; Donders Institute for Brain, Cognition and Behavior, Radboud University, Nijmegen 6525 EN, The Netherlands.
  • Smith SM; Department of Cognitive Neuroscience, Radboud University Medical Centre Nijmegen, Postbus 9101, Nijmegen 6500 HB, The Netherlands.
  • Van Essen DC; FMRIB centre, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK.
Nature ; 536(7615): 171-178, 2016 08 11.
Article en En | MEDLINE | ID: mdl-27437579
Understanding the amazingly complex human cerebral cortex requires a map (or parcellation) of its major subdivisions, known as cortical areas. Making an accurate areal map has been a century-old objective in neuroscience. Using multi-modal magnetic resonance images from the Human Connectome Project (HCP) and an objective semi-automated neuroanatomical approach, we delineated 180 areas per hemisphere bounded by sharp changes in cortical architecture, function, connectivity, and/or topography in a precisely aligned group average of 210 healthy young adults. We characterized 97 new areas and 83 areas previously reported using post-mortem microscopy or other specialized study-specific approaches. To enable automated delineation and identification of these areas in new HCP subjects and in future studies, we trained a machine-learning classifier to recognize the multi-modal 'fingerprint' of each cortical area. This classifier detected the presence of 96.6% of the cortical areas in new subjects, replicated the group parcellation, and could correctly locate areas in individuals with atypical parcellations. The freely available parcellation and classifier will enable substantially improved neuroanatomical precision for studies of the structural and functional organization of human cerebral cortex and its variation across individuals and in development, aging, and disease.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Corteza Cerebral / Neuroanatomía Tipo de estudio: Prognostic_studies Límite: Adult / Female / Humans / Male Idioma: En Revista: Nature Año: 2016 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Corteza Cerebral / Neuroanatomía Tipo de estudio: Prognostic_studies Límite: Adult / Female / Humans / Male Idioma: En Revista: Nature Año: 2016 Tipo del documento: Article País de afiliación: Estados Unidos