Your browser doesn't support javascript.
loading
Understanding the Catalytic Mechanism of Xanthosine Methyltransferase in Caffeine Biosynthesis from QM/MM Molecular Dynamics and Free Energy Simulations.
Qian, Ping; Guo, Hao-Bo; Yue, Yufei; Wang, Liang; Yang, Xiaohan; Guo, Hong.
Afiliación
  • Qian P; Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee , Knoxville, Tennessee 37996, United States.
  • Guo HB; UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory , Oak Ridge, Tennessee 37830, United States.
  • Yue Y; Chemistry and Material Science Faculty, Shandong Agricultural University , Tai'an 271018, Shandong, People's Republic of China.
  • Wang L; Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee , Knoxville, Tennessee 37996, United States.
  • Yang X; Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee , Knoxville, Tennessee 37996, United States.
  • Guo H; UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory , Oak Ridge, Tennessee 37830, United States.
J Chem Inf Model ; 56(9): 1755-61, 2016 09 26.
Article en En | MEDLINE | ID: mdl-27482605
ABSTRACT
S-Adenosyl-l-methionine (SAM) dependent xanthosine methyltransferase (XMT) is the key enzyme that catalyzes the first methyl transfer in the caffeine biosynthesis pathway to produce the intermediate 7-methylxanthosine (7mXR). Although XMT has been a subject of extensive discussions, the catalytic mechanism and nature of the substrate involved in the catalysis are still unclear. In this paper, quantum mechanical/molecular mechanical (QM/MM) molecular dynamics (MD) and free energy (potential of mean force or PMF) simulations are undertaken to determine the catalytic mechanism of the XMT-catalyzed reaction. Both xanthosine and its monoanionic form with N3 deprotonated are used as the substrates for the methylation. It is found that while the methyl group can be transferred to the monoanionic form of xanthosine with a reasonable free energy barrier (about 17 kcal/mol), that is not the case for the neutral xanthosine. The results suggest that the substrate for the first methylation step in the caffeine biosynthesis pathway is likely to be the monoanionic form of xanthosine rather than the neutral form as widely adopted. This conclusion is supported by the pKa value on N3 of xanthosine both measured in aqueous phase and calculated in the enzymatic environment. The structural and dynamics information from both the X-ray structure and MD simulations is also consistent with the monoanionic xanthosine scenario. The implications of this conclusion for caffeine biosynthesis are discussed.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Teoría Cuántica / Ribonucleósidos / Cafeína / Biocatálisis / Simulación de Dinámica Molecular / Metiltransferasas Idioma: En Revista: J Chem Inf Model Asunto de la revista: INFORMATICA MEDICA / QUIMICA Año: 2016 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Teoría Cuántica / Ribonucleósidos / Cafeína / Biocatálisis / Simulación de Dinámica Molecular / Metiltransferasas Idioma: En Revista: J Chem Inf Model Asunto de la revista: INFORMATICA MEDICA / QUIMICA Año: 2016 Tipo del documento: Article País de afiliación: Estados Unidos