Your browser doesn't support javascript.
loading
Combining High-Content Imaging and Phenotypic Classification Analysis of Senescence-Associated Beta-Galactosidase Staining to Identify Regulators of Oncogene-Induced Senescence.
Chan, Keefe T; Paavolainen, Lassi; Hannan, Katherine M; George, Amee J; Hannan, Ross D; Simpson, Kaylene J; Horvath, Peter; Pearson, Richard B.
Afiliación
  • Chan KT; 1 Division of Cancer Research, Peter MacCallum Cancer Centre , Melbourne, Australia .
  • Paavolainen L; 2 Institute for Molecular Medicine Finland, University of Helsinki , Helsinki, Finland .
  • Hannan KM; 3 John Curtin School of Medical Research, Australian National University , Canberra, Australia .
  • George AJ; 4 Department of Biochemistry and Molecular Biology, University of Melbourne , Melbourne, Australia .
  • Hannan RD; 3 John Curtin School of Medical Research, Australian National University , Canberra, Australia .
  • Simpson KJ; 5 School of Biomedical Sciences, University of Queensland , Brisbane, Queensland, Australia .
  • Horvath P; 1 Division of Cancer Research, Peter MacCallum Cancer Centre , Melbourne, Australia .
  • Pearson RB; 3 John Curtin School of Medical Research, Australian National University , Canberra, Australia .
Assay Drug Dev Technol ; 14(7): 416-28, 2016 09.
Article en En | MEDLINE | ID: mdl-27552145
Hyperactivation of the PI3K/AKT/mTORC1 signaling pathway is a hallmark of the majority of sporadic human cancers. Paradoxically, chronic activation of this pathway in nontransformed cells promotes senescence, which acts as a significant barrier to malignant progression. Understanding how this oncogene-induced senescence is maintained in nontransformed cells and conversely how it is subverted in cancer cells will provide insight into cancer development and potentially identify novel therapeutic targets. High-throughput screening provides a powerful platform for target discovery. Here, we describe an approach to use RNAi transfection of a pre-established AKT-induced senescent cell population and subsequent high-content imaging to screen for senescence regulators. We have incorporated multiparametric readouts, including cell number, proliferation, and senescence-associated beta-galactosidase (SA-ßGal) staining. Using machine learning and automated image analysis, we also describe methods to classify distinct phenotypes of cells with SA-ßGal staining. These methods can be readily adaptable to high-throughput functional screens interrogating the mechanisms that maintain and prevent senescence in various contexts.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Oncogenes / Fenotipo / Coloración y Etiquetado / Senescencia Celular / Beta-Galactosidasa / Ensayos Analíticos de Alto Rendimiento Tipo de estudio: Risk_factors_studies Límite: Humans Idioma: En Revista: Assay Drug Dev Technol Asunto de la revista: FARMACOLOGIA Año: 2016 Tipo del documento: Article País de afiliación: Australia

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Oncogenes / Fenotipo / Coloración y Etiquetado / Senescencia Celular / Beta-Galactosidasa / Ensayos Analíticos de Alto Rendimiento Tipo de estudio: Risk_factors_studies Límite: Humans Idioma: En Revista: Assay Drug Dev Technol Asunto de la revista: FARMACOLOGIA Año: 2016 Tipo del documento: Article País de afiliación: Australia