Your browser doesn't support javascript.
loading
Acquisition of an oncogenic fusion protein serves as an initial driving mutation by inducing aneuploidy and overriding proliferative defects.
Loupe, Jacob M; Miller, Patrick J; Bonner, Benjamin P; Maggi, Elaine C; Vijayaraghavan, Jyothi; Zabaleta, Jovanny; Taylor, Christopher M; Tsien, Fern; Crabtree, Judy S; Hollenbach, Andrew D.
Afiliación
  • Loupe JM; Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA, USA.
  • Miller PJ; Center for Human Genetic Research, Massachusetts General Hospital, Richard B. Simches Research Center, Boston, MA, USA.
  • Bonner BP; Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA, USA.
  • Maggi EC; Tulane University, New Orleans, LA, USA.
  • Vijayaraghavan J; Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA, USA.
  • Zabaleta J; Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA, USA.
  • Taylor CM; Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA, USA.
  • Tsien F; Department of Pediatrics and Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA.
  • Crabtree JS; Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, USA.
  • Hollenbach AD; Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA, USA.
Oncotarget ; 7(39): 62814-62835, 2016 Sep 27.
Article en En | MEDLINE | ID: mdl-27588498
ABSTRACT
While many solid tumors are defined by the presence of a particular oncogene, the role that this oncogene plays in driving transformation through the acquisition of aneuploidy and overcoming growth arrest are often not known. Further, although aneuploidy is present in many solid tumors, it is not clear whether it is the cause or effect of malignant transformation. The childhood sarcoma, Alveolar Rhabdomyosarcoma (ARMS), is primarily defined by the t(2;13)(q35;q14) translocation, creating the PAX3-FOXO1 fusion protein. It is unclear what role PAX3-FOXO1 plays in the initial stages of tumor development through the acquisition and persistence of aneuploidy. In this study we demonstrate that PAX3-FOXO1 serves as a driver mutation to initiate a cascade of mRNA and miRNA changes that ultimately reprogram proliferating myoblasts to induce the formation of ARMS. We present evidence that cells containing PAX3-FOXO1 have changes in the expression of mRNA and miRNA essential for maintaining proper chromosome number and structure thereby promoting aneuploidy. Further, we demonstrate that the presence of PAX3-FOXO1 alters the expression of growth factor related mRNA and miRNA, thereby overriding aneuploid-dependent growth arrest. Finally, we present evidence that phosphorylation of PAX3-FOXO1 contributes to these changes. This is one of the first studies describing how an oncogene and post-translational modifications drive the development of a tumor through the acquisition and persistence of aneuploidy. This mechanism has implications for other solid tumors where large-scale genomics studies may elucidate how global alterations contribute to tumor phenotypes allowing the development of much needed multi-faceted tumor-specific therapeutic regimens.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Proteínas de Fusión Oncogénica / Rabdomiosarcoma Alveolar / Factor de Transcripción PAX3 / Proteína Forkhead Box O1 / Mutación Límite: Animals / Humans Idioma: En Revista: Oncotarget Año: 2016 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Proteínas de Fusión Oncogénica / Rabdomiosarcoma Alveolar / Factor de Transcripción PAX3 / Proteína Forkhead Box O1 / Mutación Límite: Animals / Humans Idioma: En Revista: Oncotarget Año: 2016 Tipo del documento: Article País de afiliación: Estados Unidos