Your browser doesn't support javascript.
loading
Molecular basis of cobalamin-dependent RNA modification.
Dowling, Daniel P; Miles, Zachary D; Köhrer, Caroline; Maiocco, Stephanie J; Elliott, Sean J; Bandarian, Vahe; Drennan, Catherine L.
Afiliación
  • Dowling DP; Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
  • Miles ZD; Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
  • Köhrer C; Department of Chemistry, University of Utah, Salt Lake City, UT 84112, USA.
  • Maiocco SJ; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
  • Elliott SJ; Department of Chemistry, Boston University, Boston, MA 02215, USA.
  • Bandarian V; Department of Chemistry, Boston University, Boston, MA 02215, USA.
  • Drennan CL; Department of Chemistry, University of Utah, Salt Lake City, UT 84112, USA.
Nucleic Acids Res ; 44(20): 9965-9976, 2016 Nov 16.
Article en En | MEDLINE | ID: mdl-27638883
ABSTRACT
Queuosine (Q) was discovered in the wobble position of a transfer RNA (tRNA) 47 years ago, yet the final biosynthetic enzyme responsible for Q-maturation, epoxyqueuosine (oQ) reductase (QueG), was only recently identified. QueG is a cobalamin (Cbl)-dependent, [4Fe-4S] cluster-containing protein that produces the hypermodified nucleoside Q in situ on four tRNAs. To understand how QueG is able to perform epoxide reduction, an unprecedented reaction for a Cbl-dependent enzyme, we have determined a series of high resolution structures of QueG from Bacillus subtilis Our structure of QueG bound to a tRNATyr anticodon stem loop shows how this enzyme uses a HEAT-like domain to recognize the appropriate anticodons and position the hypermodified nucleoside into the enzyme active site. We find Q bound directly above the Cbl, consistent with a reaction mechanism that involves the formation of a covalent Cbl-tRNA intermediate. Using protein film electrochemistry, we show that two [4Fe-4S] clusters adjacent to the Cbl have redox potentials in the range expected for Cbl reduction, suggesting how Cbl can be activated for nucleophilic attack on oQ. Together, these structural and electrochemical data inform our understanding of Cbl dependent nucleic acid modification.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Vitamina B 12 / ARN de Transferencia / Procesamiento Postranscripcional del ARN Idioma: En Revista: Nucleic Acids Res Año: 2016 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Vitamina B 12 / ARN de Transferencia / Procesamiento Postranscripcional del ARN Idioma: En Revista: Nucleic Acids Res Año: 2016 Tipo del documento: Article País de afiliación: Estados Unidos