Your browser doesn't support javascript.
loading
A-type Lamins Form Distinct Filamentous Networks with Differential Nuclear Pore Complex Associations.
Xie, Wei; Chojnowski, Alexandre; Boudier, Thomas; Lim, John S Y; Ahmed, Sohail; Ser, Zheng; Stewart, Colin; Burke, Brian.
Afiliación
  • Xie W; Laboratory of Nuclear Dynamics and Architecture, Institute of Medical Biology, 8A Biomedical Grove, Immunos, Singapore 138648, Singapore. Electronic address: wei.xie@imb.a-star.edu.sg.
  • Chojnowski A; Laboratory of Developmental and Regenerative Biology, Institute of Medical Biology, 8A Biomedical Grove, Immunos, Singapore 138648, Singapore.
  • Boudier T; IPAL UMI 2955 (CNRS, UPMC, UJF, IMT, I2R, NUS), BioInformatics Institute, Agency for Science, Technology and Research (A(∗)STAR), 30 Biopolis Street, 07-01 Matrix, Singapore 138671, Singapore.
  • Lim JS; Microscopy Unit, Institute of Medical Biology, 8A Biomedical Grove, Immunos, Singapore 138648, Singapore.
  • Ahmed S; Laboratory of Neural Stem Cells, Institute of Medical Biology, 8A Biomedical Grove, Immunos, Singapore 138648, Singapore.
  • Ser Z; Laboratory of Developmental and Regenerative Biology, Institute of Medical Biology, 8A Biomedical Grove, Immunos, Singapore 138648, Singapore.
  • Stewart C; Laboratory of Developmental and Regenerative Biology, Institute of Medical Biology, 8A Biomedical Grove, Immunos, Singapore 138648, Singapore.
  • Burke B; Laboratory of Nuclear Dynamics and Architecture, Institute of Medical Biology, 8A Biomedical Grove, Immunos, Singapore 138648, Singapore. Electronic address: brian.burke@imb.a-star.edu.sg.
Curr Biol ; 26(19): 2651-2658, 2016 10 10.
Article en En | MEDLINE | ID: mdl-27641764
ABSTRACT
The nuclear lamina is a universal feature of metazoan nuclear envelopes (NEs) [1]. In mammalian cells, it appears as a 10-30 nm filamentous layer at the nuclear face of the inner nuclear membrane (INM) and is composed primarily of A- and B-type lamins, members of the intermediate filament family [2]. While providing structural integrity to the NE, the lamina also represents an important signaling and regulatory platform [3]. Two A-type lamin isoforms, lamins A and C (LaA and LaC), are expressed in most adult human cells. Encoded by a single gene, these proteins are largely identical, diverging only in their C-terminal tail domains. By contrast with that of LaC, the unique LaA tail undergoes extensive processing, including farnesylation and endo-proteolysis [4, 5]. However, functional differences between LaA and LaC are still unclear. Compounding this uncertainty, the structure of the lamina remains ill defined. In this study, we used BioID, an in vivo proximity-labeling method to identify differential interactors of A-type lamins [6]. One of these, Tpr, a nuclear pore complex (NPC) protein, is highlighted by its selective association with LaC. By employing superresolution microscopy, we demonstrate that this Tpr association is mirrored in enhanced interaction of LaC with NPCs. Further superresolution studies visualizing both endogenous A- and B-type lamins have allowed us to construct a nanometer-scale model of the mammalian nuclear lamina. Our data indicate that different A- and B-type lamin species assemble into separate filament networks that together form an extended composite structure at the nuclear periphery providing attachment sites for NPCs, thereby regulating their distribution.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Filamentos Intermedios / Poro Nuclear / Lamina Tipo A Tipo de estudio: Risk_factors_studies Límite: Humans Idioma: En Revista: Curr Biol Asunto de la revista: BIOLOGIA Año: 2016 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Filamentos Intermedios / Poro Nuclear / Lamina Tipo A Tipo de estudio: Risk_factors_studies Límite: Humans Idioma: En Revista: Curr Biol Asunto de la revista: BIOLOGIA Año: 2016 Tipo del documento: Article