Your browser doesn't support javascript.
loading
Projected land photosynthesis constrained by changes in the seasonal cycle of atmospheric CO2.
Wenzel, Sabrina; Cox, Peter M; Eyring, Veronika; Friedlingstein, Pierre.
Afiliación
  • Wenzel S; Deutsches Zentrum für Luft- und Raumfahrt (DLR), Institut für Physik der Atmosphäre, Oberpfaffenhofen, Germany.
  • Cox PM; College of Engineering, Mathematics &Physical Sciences, University of Exeter, Exeter EX4 4QE, UK.
  • Eyring V; Deutsches Zentrum für Luft- und Raumfahrt (DLR), Institut für Physik der Atmosphäre, Oberpfaffenhofen, Germany.
  • Friedlingstein P; College of Engineering, Mathematics &Physical Sciences, University of Exeter, Exeter EX4 4QE, UK.
Nature ; 538(7626): 499-501, 2016 10 27.
Article en En | MEDLINE | ID: mdl-27680704
ABSTRACT
Uncertainties in the response of vegetation to rising atmospheric CO2 concentrations contribute to the large spread in projections of future climate change. Climate-carbon cycle models generally agree that elevated atmospheric CO2 concentrations will enhance terrestrial gross primary productivity (GPP). However, the magnitude of this CO2 fertilization effect varies from a 20 per cent to a 60 per cent increase in GPP for a doubling of atmospheric CO2 concentrations in model studies. Here we demonstrate emergent constraints on large-scale CO2 fertilization using observed changes in the amplitude of the atmospheric CO2 seasonal cycle that are thought to be the result of increasing terrestrial GPP. Our comparison of atmospheric CO2 measurements from Point Barrow in Alaska and Cape Kumukahi in Hawaii with historical simulations of the latest climate-carbon cycle models demonstrates that the increase in the amplitude of the CO2 seasonal cycle at both measurement sites is consistent with increasing annual mean GPP, driven in part by climate warming, but with differences in CO2 fertilization controlling the spread among the model trends. As a result, the relationship between the amplitude of the CO2 seasonal cycle and the magnitude of CO2 fertilization of GPP is almost linear across the entire ensemble of models. When combined with the observed trends in the seasonal CO2 amplitude, these relationships lead to consistent emergent constraints on the CO2 fertilization of GPP. Overall, we estimate a GPP increase of 37 ± 9 per cent for high-latitude ecosystems and 32 ± 9 per cent for extratropical ecosystems under a doubling of atmospheric CO2 concentrations on the basis of the Point Barrow and Cape Kumukahi records, respectively.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Fotosíntesis / Atmósfera / Estaciones del Año / Cambio Climático / Dióxido de Carbono / Incertidumbre / Modelos Teóricos Tipo de estudio: Prognostic_studies País/Región como asunto: America do norte Idioma: En Revista: Nature Año: 2016 Tipo del documento: Article País de afiliación: Alemania

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Fotosíntesis / Atmósfera / Estaciones del Año / Cambio Climático / Dióxido de Carbono / Incertidumbre / Modelos Teóricos Tipo de estudio: Prognostic_studies País/Región como asunto: America do norte Idioma: En Revista: Nature Año: 2016 Tipo del documento: Article País de afiliación: Alemania