Your browser doesn't support javascript.
loading
Capillary Bridging as a Tool for Assembling Discrete Clusters of Patchy Particles.
Bharti, Bhuvnesh; Rutkowski, David; Han, Koohee; Kumar, Aakash Umesh; Hall, Carol K; Velev, Orlin D.
Afiliación
  • Bharti B; Department of Chemical and Biomolecular Engineering, North Carolina State University , Raleigh, North Carolina 27695, United States.
  • Rutkowski D; Cain Department of Chemical Engineering, Louisiana State University , Baton Rouge, Louisiana 70803, United States.
  • Han K; Department of Chemical and Biomolecular Engineering, North Carolina State University , Raleigh, North Carolina 27695, United States.
  • Kumar AU; Department of Chemical and Biomolecular Engineering, North Carolina State University , Raleigh, North Carolina 27695, United States.
  • Hall CK; Department of Chemical and Biomolecular Engineering, North Carolina State University , Raleigh, North Carolina 27695, United States.
  • Velev OD; Department of Chemical and Biomolecular Engineering, North Carolina State University , Raleigh, North Carolina 27695, United States.
J Am Chem Soc ; 138(45): 14948-14953, 2016 11 16.
Article en En | MEDLINE | ID: mdl-27775335
Janus and patchy particles are emerging as models for studying complex directed assembly patterns and as precursors of new structured materials and composites. Here we show how lipid-induced capillary bridging could serve as a new and nonconventional method of assembling patchy particles into ordered structures. Iron oxide surface patches on latex microspheres were selectively wetted with liquid lipid, driving the particle assembly into two- and three-dimensional clusters via interparticle capillary bridge formation. The liquid phase of the bridges allows local reorganization of the particles within the clusters and assists in forming true equilibrium configurations. The temperature-driven fluid-to-gel and gel-to-fluid phase transitions of the fatty acids within the bridge act as a thermal switch for cluster assembly and disassembly. By complementing the experiments with Monte Carlo simulations, we show that the equilibrium cluster morphology is determined by the patch characteristics, namely, their size, number, and shape. This study demonstrates the ability of capillary bridging as a versatile tool to assemble thermoresponsive clusters and aggregates. This method of binding particles is simple, robust, and generic and can be extended further to assemble particles with nonspherical shapes and complex surface chemistries enabling the formation of sophisticated colloidal molecules.
Buscar en Google
Colección: 01-internacional Banco de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: J Am Chem Soc Año: 2016 Tipo del documento: Article País de afiliación: Estados Unidos
Buscar en Google
Colección: 01-internacional Banco de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: J Am Chem Soc Año: 2016 Tipo del documento: Article País de afiliación: Estados Unidos