Your browser doesn't support javascript.
loading
Experimental and theoretical evidence for bilayer-by-bilayer surface melting of crystalline ice.
Sánchez, M Alejandra; Kling, Tanja; Ishiyama, Tatsuya; van Zadel, Marc-Jan; Bisson, Patrick J; Mezger, Markus; Jochum, Mara N; Cyran, Jenée D; Smit, Wilbert J; Bakker, Huib J; Shultz, Mary Jane; Morita, Akihiro; Donadio, Davide; Nagata, Yuki; Bonn, Mischa; Backus, Ellen H G.
Afiliación
  • Sánchez MA; Max Planck Institute for Polymer Research, 55128 Mainz, Germany.
  • Kling T; Max Planck Institute for Polymer Research, 55128 Mainz, Germany.
  • Ishiyama T; Graduate School of Science and Engineering, University of Toyama, Toyama 930-8555, Japan.
  • van Zadel MJ; Max Planck Institute for Polymer Research, 55128 Mainz, Germany.
  • Bisson PJ; Laboratory for Water and Surface Studies, Department of Chemistry, Pearson Laboratory, Tufts University, Medford, MA 02155.
  • Mezger M; Max Planck Institute for Polymer Research, 55128 Mainz, Germany.
  • Jochum MN; Institute of Physics, Johannes Gutenberg University Mainz, 55128 Mainz, Germany.
  • Cyran JD; Max Planck Institute for Polymer Research, 55128 Mainz, Germany.
  • Smit WJ; BASF SE, 67117 Limburgerhof, Germany.
  • Bakker HJ; Max Planck Institute for Polymer Research, 55128 Mainz, Germany.
  • Shultz MJ; FOM Institute AMOLF, 1098 XG Amsterdam, The Netherlands.
  • Morita A; FOM Institute AMOLF, 1098 XG Amsterdam, The Netherlands.
  • Donadio D; Laboratory for Water and Surface Studies, Department of Chemistry, Pearson Laboratory, Tufts University, Medford, MA 02155.
  • Nagata Y; Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan.
  • Bonn M; Elements Strategy Initiative for Catalysts and Batteries, Kyoto University, Kyoto 615-8520, Japan.
  • Backus EH; Max Planck Institute for Polymer Research, 55128 Mainz, Germany.
Proc Natl Acad Sci U S A ; 114(2): 227-232, 2017 01 10.
Article en En | MEDLINE | ID: mdl-27956637
On the surface of water ice, a quasi-liquid layer (QLL) has been extensively reported at temperatures below its bulk melting point at 273 K. Approaching the bulk melting temperature from below, the thickness of the QLL is known to increase. To elucidate the precise temperature variation of the QLL, and its nature, we investigate the surface melting of hexagonal ice by combining noncontact, surface-specific vibrational sum frequency generation (SFG) spectroscopy and spectra calculated from molecular dynamics simulations. Using SFG, we probe the outermost water layers of distinct single crystalline ice faces at different temperatures. For the basal face, a stepwise, sudden weakening of the hydrogen-bonded structure of the outermost water layers occurs at 257 K. The spectral calculations from the molecular dynamics simulations reproduce the experimental findings; this allows us to interpret our experimental findings in terms of a stepwise change from one to two molten bilayers at the transition temperature.
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Proc Natl Acad Sci U S A Año: 2017 Tipo del documento: Article País de afiliación: Alemania

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Proc Natl Acad Sci U S A Año: 2017 Tipo del documento: Article País de afiliación: Alemania