Self-neutralizing oligonucleotides with enhanced cellular uptake.
Org Biomol Chem
; 15(6): 1363-1380, 2017 Feb 07.
Article
en En
| MEDLINE
| ID: mdl-28074950
There is tremendous potential for oligonucleotide (ON) therapeutics, but low cellular penetration due to their polyanionic nature is a major obstacle. We addressed this problem by developing a new approach for ON charge neutralization in which multiple branched charge-neutralizing sleeves (BCNSs) are attached to the internucleoside phosphates of ON by phosphotriester bonds. The BCNSs are terminated with positively charged amino groups, and are optimized to form ion pairs with the neighboring phosphate groups. The new modified ONs can be prepared by standard automated phosphoramidite chemistry in good yield and purity. They possess good solubility and hybridization properties, are not involved in non-standard intramolecular aggregation, have low cytotoxicity, adequate chemical stability, improved serum stability, and above all, display significantly enhanced cellular uptake. Thus, the new ON derivatives exhibit properties that make them promising candidates for the development of novel therapeutics or research tools for modulation of the expression of target genes.
Texto completo:
1
Colección:
01-internacional
Banco de datos:
MEDLINE
Asunto principal:
Oligonucleótidos
Límite:
Humans
Idioma:
En
Revista:
Org Biomol Chem
Asunto de la revista:
BIOQUIMICA
/
QUIMICA
Año:
2017
Tipo del documento:
Article
País de afiliación:
Estados Unidos