Your browser doesn't support javascript.
loading
Air pollution alters Staphylococcus aureus and Streptococcus pneumoniae biofilms, antibiotic tolerance and colonisation.
Hussey, Shane J K; Purves, Joanne; Allcock, Natalie; Fernandes, Vitor E; Monks, Paul S; Ketley, Julian M; Andrew, Peter W; Morrissey, Julie A.
Afiliación
  • Hussey SJK; Department of Genetics, Adrian Building, University of Leicester, University Road, Leicester, LE1 7RH, Leicestershire, UK.
  • Purves J; Department of Genetics, Adrian Building, University of Leicester, University Road, Leicester, LE1 7RH, Leicestershire, UK.
  • Allcock N; Centre for Core Biotechnology Services, Adrian Building, University of Leicester, University Road, Leicester, LE1 7RH, Leicestershire, UK.
  • Fernandes VE; Department of Infection, Immunity and Inflammation, Medical Sciences Building, University of Leicester, University Road, Leicester, LE1 9HN, Leicestershire, UK.
  • Monks PS; Department of Chemistry, University of Leicester, University Road, Leicester, LE1 7RH, Leicestershire, UK.
  • Ketley JM; Department of Genetics, Adrian Building, University of Leicester, University Road, Leicester, LE1 7RH, Leicestershire, UK.
  • Andrew PW; Department of Infection, Immunity and Inflammation, Medical Sciences Building, University of Leicester, University Road, Leicester, LE1 9HN, Leicestershire, UK.
  • Morrissey JA; Department of Genetics, Adrian Building, University of Leicester, University Road, Leicester, LE1 7RH, Leicestershire, UK.
Environ Microbiol ; 19(5): 1868-1880, 2017 05.
Article en En | MEDLINE | ID: mdl-28195384
ABSTRACT
Air pollution is the world's largest single environmental health risk (WHO). Particulate matter such as black carbon is one of the main components of air pollution. The effects of particulate matter on human health are well established however the effects on bacteria, organisms central to ecosystems in humans and in the natural environment, are poorly understood. We report here for the first time that black carbon drastically changes the development of bacterial biofilms, key aspects of bacterial colonisation and survival. Our data show that exposure to black carbon induces structural, compositional and functional changes in the biofilms of both S. pneumoniae and S. aureus. Importantly, the tolerance of the biofilms to multiple antibiotics and proteolytic degradation is significantly affected. Additionally, our results show that black carbon impacts bacterial colonisation in vivo. In a mouse nasopharyngeal colonisation model, black carbon caused S. pneumoniae to spread from the nasopharynx to the lungs, which is essential for subsequent infection. Therefore our study highlights that air pollution has a significant effect on bacteria that has been largely overlooked. Consequently these findings have important implications concerning the impact of air pollution on human health and bacterial ecosystems worldwide.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Streptococcus pneumoniae / Biopelículas / Farmacorresistencia Bacteriana Múltiple / Contaminación del Aire / Hollín / Staphylococcus aureus Resistente a Meticilina / Antibacterianos Tipo de estudio: Prognostic_studies Límite: Animals / Humans Idioma: En Revista: Environ Microbiol Asunto de la revista: MICROBIOLOGIA / SAUDE AMBIENTAL Año: 2017 Tipo del documento: Article País de afiliación: Reino Unido

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Streptococcus pneumoniae / Biopelículas / Farmacorresistencia Bacteriana Múltiple / Contaminación del Aire / Hollín / Staphylococcus aureus Resistente a Meticilina / Antibacterianos Tipo de estudio: Prognostic_studies Límite: Animals / Humans Idioma: En Revista: Environ Microbiol Asunto de la revista: MICROBIOLOGIA / SAUDE AMBIENTAL Año: 2017 Tipo del documento: Article País de afiliación: Reino Unido