Your browser doesn't support javascript.
loading
Distance-dependent gradient in NMDAR-driven spine calcium signals along tapering dendrites.
Walker, Alison S; Neves, Guilherme; Grillo, Federico; Jackson, Rachel E; Rigby, Mark; O'Donnell, Cian; Lowe, Andrew S; Vizcay-Barrena, Gema; Fleck, Roland A; Burrone, Juan.
Afiliación
  • Walker AS; Centre for Developmental Neurobiology, Kings College London, London SE1 1UL, United Kingdom.
  • Neves G; Centre for Developmental Neurobiology, Kings College London, London SE1 1UL, United Kingdom.
  • Grillo F; Centre for Developmental Neurobiology, Kings College London, London SE1 1UL, United Kingdom.
  • Jackson RE; Centre for Developmental Neurobiology, Kings College London, London SE1 1UL, United Kingdom.
  • Rigby M; Centre for Developmental Neurobiology, Kings College London, London SE1 1UL, United Kingdom.
  • O'Donnell C; Department of Computer Science, University of Bristol, Bristol BS8 1UB, United Kingdom.
  • Lowe AS; Centre for Developmental Neurobiology, Kings College London, London SE1 1UL, United Kingdom.
  • Vizcay-Barrena G; Centre for Ultrastructural Imaging, Kings College London, London SE1 1UL, United Kingdom.
  • Fleck RA; Centre for Ultrastructural Imaging, Kings College London, London SE1 1UL, United Kingdom.
  • Burrone J; Centre for Developmental Neurobiology, Kings College London, London SE1 1UL, United Kingdom; juan.burrone@kcl.ac.uk.
Proc Natl Acad Sci U S A ; 114(10): E1986-E1995, 2017 03 07.
Article en En | MEDLINE | ID: mdl-28209776
ABSTRACT
Neurons receive a multitude of synaptic inputs along their dendritic arbor, but how this highly heterogeneous population of synaptic compartments is spatially organized remains unclear. By measuring N-methyl-d-aspartic acid receptor (NMDAR)-driven calcium responses in single spines, we provide a spatial map of synaptic calcium signals along dendritic arbors of hippocampal neurons and relate this to measures of synapse structure. We find that quantal NMDAR calcium signals increase in amplitude as they approach a thinning dendritic tip end. Based on a compartmental model of spine calcium dynamics, we propose that this biased distribution in calcium signals is governed by a gradual, distance-dependent decline in spine size, which we visualized using serial block-face scanning electron microscopy. Our data describe a cell-autonomous feature of principal neurons, where tapering dendrites show an inverse distribution of spine size and NMDAR-driven calcium signals along dendritic trees, with important implications for synaptic plasticity rules and spine function.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Calcio / Receptores de N-Metil-D-Aspartato / Células Piramidales / Espinas Dendríticas / Hipocampo Tipo de estudio: Prognostic_studies Límite: Animals / Pregnancy Idioma: En Revista: Proc Natl Acad Sci U S A Año: 2017 Tipo del documento: Article País de afiliación: Reino Unido

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Calcio / Receptores de N-Metil-D-Aspartato / Células Piramidales / Espinas Dendríticas / Hipocampo Tipo de estudio: Prognostic_studies Límite: Animals / Pregnancy Idioma: En Revista: Proc Natl Acad Sci U S A Año: 2017 Tipo del documento: Article País de afiliación: Reino Unido