Your browser doesn't support javascript.
loading
Comparative Analysis of Single-Cell RNA Sequencing Methods.
Ziegenhain, Christoph; Vieth, Beate; Parekh, Swati; Reinius, Björn; Guillaumet-Adkins, Amy; Smets, Martha; Leonhardt, Heinrich; Heyn, Holger; Hellmann, Ines; Enard, Wolfgang.
Afiliación
  • Ziegenhain C; Anthropology & Human Genomics, Department of Biology II, Ludwig-Maximilians University, Großhaderner Straße 2, 82152 Martinsried, Germany.
  • Vieth B; Anthropology & Human Genomics, Department of Biology II, Ludwig-Maximilians University, Großhaderner Straße 2, 82152 Martinsried, Germany.
  • Parekh S; Anthropology & Human Genomics, Department of Biology II, Ludwig-Maximilians University, Großhaderner Straße 2, 82152 Martinsried, Germany.
  • Reinius B; Ludwig Institute for Cancer Research, Box 240, 171 77 Stockholm, Sweden; Department of Cell and Molecular Biology, Karolinska Institutet, 171 77 Stockholm, Sweden.
  • Guillaumet-Adkins A; CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain; Universitat Pompeu Fabra (UPF), 08002 Barcelona, Spain.
  • Smets M; Department of Biology II and Center for Integrated Protein Science Munich (CIPSM), Ludwig-Maximilians University, Großhaderner Straße 2, 82152 Martinsried, Germany.
  • Leonhardt H; Department of Biology II and Center for Integrated Protein Science Munich (CIPSM), Ludwig-Maximilians University, Großhaderner Straße 2, 82152 Martinsried, Germany.
  • Heyn H; CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain; Universitat Pompeu Fabra (UPF), 08002 Barcelona, Spain.
  • Hellmann I; Anthropology & Human Genomics, Department of Biology II, Ludwig-Maximilians University, Großhaderner Straße 2, 82152 Martinsried, Germany.
  • Enard W; Anthropology & Human Genomics, Department of Biology II, Ludwig-Maximilians University, Großhaderner Straße 2, 82152 Martinsried, Germany. Electronic address: enard@bio.lmu.de.
Mol Cell ; 65(4): 631-643.e4, 2017 Feb 16.
Article en En | MEDLINE | ID: mdl-28212749
Single-cell RNA sequencing (scRNA-seq) offers new possibilities to address biological and medical questions. However, systematic comparisons of the performance of diverse scRNA-seq protocols are lacking. We generated data from 583 mouse embryonic stem cells to evaluate six prominent scRNA-seq methods: CEL-seq2, Drop-seq, MARS-seq, SCRB-seq, Smart-seq, and Smart-seq2. While Smart-seq2 detected the most genes per cell and across cells, CEL-seq2, Drop-seq, MARS-seq, and SCRB-seq quantified mRNA levels with less amplification noise due to the use of unique molecular identifiers (UMIs). Power simulations at different sequencing depths showed that Drop-seq is more cost-efficient for transcriptome quantification of large numbers of cells, while MARS-seq, SCRB-seq, and Smart-seq2 are more efficient when analyzing fewer cells. Our quantitative comparison offers the basis for an informed choice among six prominent scRNA-seq methods, and it provides a framework for benchmarking further improvements of scRNA-seq protocols.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: ARN / Análisis de Secuencia de ARN / Células Madre Embrionarias / Análisis de la Célula Individual / Secuenciación de Nucleótidos de Alto Rendimiento Tipo de estudio: Health_economic_evaluation Límite: Animals Idioma: En Revista: Mol Cell Asunto de la revista: BIOLOGIA MOLECULAR Año: 2017 Tipo del documento: Article País de afiliación: Alemania

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: ARN / Análisis de Secuencia de ARN / Células Madre Embrionarias / Análisis de la Célula Individual / Secuenciación de Nucleótidos de Alto Rendimiento Tipo de estudio: Health_economic_evaluation Límite: Animals Idioma: En Revista: Mol Cell Asunto de la revista: BIOLOGIA MOLECULAR Año: 2017 Tipo del documento: Article País de afiliación: Alemania