Your browser doesn't support javascript.
loading
A Mutation in the G-Protein Gene GNB2 Causes Familial Sinus Node and Atrioventricular Conduction Dysfunction.
Stallmeyer, Birgit; Kuß, Johanna; Kotthoff, Stefan; Zumhagen, Sven; Vowinkel, Kirsty; Rinné, Susanne; Matschke, Lina A; Friedrich, Corinna; Schulze-Bahr, Ellen; Rust, Stephan; Seebohm, Guiscard; Decher, Niels; Schulze-Bahr, Eric.
Afiliación
  • Stallmeyer B; From the Institute for Genetics of Heart Diseases, Department of Cardiology and Angiology, University Hospital Muenster, Germany (B.S., J.K., S.Z., C.F., E.S.-B., G.S., E.S.-B.); Department of Pediatric Cardiology (S.K.) and Department of General Pediatrics (S.R.), University Children's Hospital Mue
  • Kuß J; From the Institute for Genetics of Heart Diseases, Department of Cardiology and Angiology, University Hospital Muenster, Germany (B.S., J.K., S.Z., C.F., E.S.-B., G.S., E.S.-B.); Department of Pediatric Cardiology (S.K.) and Department of General Pediatrics (S.R.), University Children's Hospital Mue
  • Kotthoff S; From the Institute for Genetics of Heart Diseases, Department of Cardiology and Angiology, University Hospital Muenster, Germany (B.S., J.K., S.Z., C.F., E.S.-B., G.S., E.S.-B.); Department of Pediatric Cardiology (S.K.) and Department of General Pediatrics (S.R.), University Children's Hospital Mue
  • Zumhagen S; From the Institute for Genetics of Heart Diseases, Department of Cardiology and Angiology, University Hospital Muenster, Germany (B.S., J.K., S.Z., C.F., E.S.-B., G.S., E.S.-B.); Department of Pediatric Cardiology (S.K.) and Department of General Pediatrics (S.R.), University Children's Hospital Mue
  • Vowinkel K; From the Institute for Genetics of Heart Diseases, Department of Cardiology and Angiology, University Hospital Muenster, Germany (B.S., J.K., S.Z., C.F., E.S.-B., G.S., E.S.-B.); Department of Pediatric Cardiology (S.K.) and Department of General Pediatrics (S.R.), University Children's Hospital Mue
  • Rinné S; From the Institute for Genetics of Heart Diseases, Department of Cardiology and Angiology, University Hospital Muenster, Germany (B.S., J.K., S.Z., C.F., E.S.-B., G.S., E.S.-B.); Department of Pediatric Cardiology (S.K.) and Department of General Pediatrics (S.R.), University Children's Hospital Mue
  • Matschke LA; From the Institute for Genetics of Heart Diseases, Department of Cardiology and Angiology, University Hospital Muenster, Germany (B.S., J.K., S.Z., C.F., E.S.-B., G.S., E.S.-B.); Department of Pediatric Cardiology (S.K.) and Department of General Pediatrics (S.R.), University Children's Hospital Mue
  • Friedrich C; From the Institute for Genetics of Heart Diseases, Department of Cardiology and Angiology, University Hospital Muenster, Germany (B.S., J.K., S.Z., C.F., E.S.-B., G.S., E.S.-B.); Department of Pediatric Cardiology (S.K.) and Department of General Pediatrics (S.R.), University Children's Hospital Mue
  • Schulze-Bahr E; From the Institute for Genetics of Heart Diseases, Department of Cardiology and Angiology, University Hospital Muenster, Germany (B.S., J.K., S.Z., C.F., E.S.-B., G.S., E.S.-B.); Department of Pediatric Cardiology (S.K.) and Department of General Pediatrics (S.R.), University Children's Hospital Mue
  • Rust S; From the Institute for Genetics of Heart Diseases, Department of Cardiology and Angiology, University Hospital Muenster, Germany (B.S., J.K., S.Z., C.F., E.S.-B., G.S., E.S.-B.); Department of Pediatric Cardiology (S.K.) and Department of General Pediatrics (S.R.), University Children's Hospital Mue
  • Seebohm G; From the Institute for Genetics of Heart Diseases, Department of Cardiology and Angiology, University Hospital Muenster, Germany (B.S., J.K., S.Z., C.F., E.S.-B., G.S., E.S.-B.); Department of Pediatric Cardiology (S.K.) and Department of General Pediatrics (S.R.), University Children's Hospital Mue
  • Decher N; From the Institute for Genetics of Heart Diseases, Department of Cardiology and Angiology, University Hospital Muenster, Germany (B.S., J.K., S.Z., C.F., E.S.-B., G.S., E.S.-B.); Department of Pediatric Cardiology (S.K.) and Department of General Pediatrics (S.R.), University Children's Hospital Mue
  • Schulze-Bahr E; From the Institute for Genetics of Heart Diseases, Department of Cardiology and Angiology, University Hospital Muenster, Germany (B.S., J.K., S.Z., C.F., E.S.-B., G.S., E.S.-B.); Department of Pediatric Cardiology (S.K.) and Department of General Pediatrics (S.R.), University Children's Hospital Mue
Circ Res ; 120(10): e33-e44, 2017 May 12.
Article en En | MEDLINE | ID: mdl-28219978
ABSTRACT
RATIONALE Familial sinus node and atrioventricular conduction dysfunction is a rare disorder that leads to paroxysmal dizziness, fatigue, and syncope because of a temporarily or permanently reduced heart rate. To date, only a few genes for familial sinus and atrioventricular conduction dysfunction are known, and the majority of cases remain pathogenically unresolved.

OBJECTIVE:

We aim to identify the disease gene in a large 3-generation family (n=25) with autosomal dominant sinus node dysfunction (SND) and atrioventricular block (AVB) and to characterize the mutation-related pathomechanisms in familial SND+AVB. METHODS AND

RESULTS:

Genome-wide linkage analysis mapped the SND+AVB disease locus to chromosome 7q21.1-q31.1 (2-point logarithm of the odds score 4.64; θ=0); in this region, targeted exome sequencing identified a novel heterozygous mutation (p.Arg52Leu) in the GNB2 gene that strictly cosegregated with the SND+AVB phenotype. GNB2 encodes the ß2 subunit (Gß2) of the heterotrimeric G-protein complex that is being released from G-protein-coupled receptors on vagal stimulation. In 2 heterologous expression systems (HEK-293T cells and Xenopus laevis oocytes), an enhanced activation of the G-protein-activated K+ channel (GIRK; Kir3.1/Kir3.4) was shown when mutant Gß2 was coexpressed with Gγ2; this was in contrast to coexpression of mutant Gß2-Gγ2 with other cardiac ion channels (HCN4, HCN2, and Cav1.2). Molecular dynamics simulations suggested a reduced binding property of mutant Gß2 to cardiac GIRK channels when compared with native Gß2.

CONCLUSIONS:

A GNB2 gene mutation is associated with familial SND+AVB and leads to a sustained activation of cardiac GIRK channels, which is likely to hyperpolarize the myocellular membrane potential and thus reduces their spontaneous activity. Our findings describe for the first time a role of a mutant G-protein in the nonsyndromic pacemaker disease because of GIRK channel activation.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Síndrome del Seno Enfermo / Proteínas de Unión al GTP / Bloqueo Atrioventricular / Mutación Tipo de estudio: Diagnostic_studies / Etiology_studies / Prognostic_studies Límite: Adult / Female / Humans / Male / Middle aged Idioma: En Revista: Circ Res Año: 2017 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Síndrome del Seno Enfermo / Proteínas de Unión al GTP / Bloqueo Atrioventricular / Mutación Tipo de estudio: Diagnostic_studies / Etiology_studies / Prognostic_studies Límite: Adult / Female / Humans / Male / Middle aged Idioma: En Revista: Circ Res Año: 2017 Tipo del documento: Article