Your browser doesn't support javascript.
loading
Improving risk prediction for depression via Elastic Net regression - Results from Korea National Health Insurance Services Data.
Kim, Min-Hyung; Banerjee, Samprit; Park, Sang Min; Pathak, Jyotishman.
Afiliación
  • Kim MH; Department of Healthcare Policy & Research, Weill Cornell Medical College, New York, NY, USA.
  • Banerjee S; Department of Healthcare Policy & Research, Weill Cornell Medical College, New York, NY, USA.
  • Park SM; Department of Family Medicine, Seoul National University College of Medicine, Seoul, Korea.
  • Pathak J; Department of Healthcare Policy & Research, Weill Cornell Medical College, New York, NY, USA.
AMIA Annu Symp Proc ; 2016: 1860-1869, 2016.
Article en En | MEDLINE | ID: mdl-28269945
Depression, despite its high prevalence, remains severely under-diagnosed across the healthcare system. This demands the development of data-driven approaches that can help screen patients who are at a high risk of depression. In this work, we develop depression risk prediction models that incorporate disease co-morbidities using logistic regression with Elastic Net. Using data from the one million twelve-year longitudinal cohort from Korean National Health Insurance Services (KNHIS), our model achieved an Area Under the Curve (AUC) of the Receiver Operating Characteristic (ROC) of 0.7818, compared to a traditional logistic regression model without co-morbidity analysis (AUC of 0.6992). We also showed co-morbidity adjusted Odds Ratios (ORs), which may be more accurate independent estimate of each predictor variable. In conclusion, inclusion of co-morbidity analysis improved the performance of depression risk prediction models.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Comorbilidad / Depresión / Programas Nacionales de Salud Tipo de estudio: Etiology_studies / Prevalence_studies / Prognostic_studies / Risk_factors_studies Límite: Adult / Female / Humans / Male / Middle aged País/Región como asunto: Asia Idioma: En Revista: AMIA Annu Symp Proc Asunto de la revista: INFORMATICA MEDICA Año: 2016 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Comorbilidad / Depresión / Programas Nacionales de Salud Tipo de estudio: Etiology_studies / Prevalence_studies / Prognostic_studies / Risk_factors_studies Límite: Adult / Female / Humans / Male / Middle aged País/Región como asunto: Asia Idioma: En Revista: AMIA Annu Symp Proc Asunto de la revista: INFORMATICA MEDICA Año: 2016 Tipo del documento: Article País de afiliación: Estados Unidos