Improving risk prediction for depression via Elastic Net regression - Results from Korea National Health Insurance Services Data.
AMIA Annu Symp Proc
; 2016: 1860-1869, 2016.
Article
en En
| MEDLINE
| ID: mdl-28269945
Depression, despite its high prevalence, remains severely under-diagnosed across the healthcare system. This demands the development of data-driven approaches that can help screen patients who are at a high risk of depression. In this work, we develop depression risk prediction models that incorporate disease co-morbidities using logistic regression with Elastic Net. Using data from the one million twelve-year longitudinal cohort from Korean National Health Insurance Services (KNHIS), our model achieved an Area Under the Curve (AUC) of the Receiver Operating Characteristic (ROC) of 0.7818, compared to a traditional logistic regression model without co-morbidity analysis (AUC of 0.6992). We also showed co-morbidity adjusted Odds Ratios (ORs), which may be more accurate independent estimate of each predictor variable. In conclusion, inclusion of co-morbidity analysis improved the performance of depression risk prediction models.
Palabras clave
Texto completo:
1
Colección:
01-internacional
Banco de datos:
MEDLINE
Asunto principal:
Comorbilidad
/
Depresión
/
Programas Nacionales de Salud
Tipo de estudio:
Etiology_studies
/
Prevalence_studies
/
Prognostic_studies
/
Risk_factors_studies
Límite:
Adult
/
Female
/
Humans
/
Male
/
Middle aged
País/Región como asunto:
Asia
Idioma:
En
Revista:
AMIA Annu Symp Proc
Asunto de la revista:
INFORMATICA MEDICA
Año:
2016
Tipo del documento:
Article
País de afiliación:
Estados Unidos