Your browser doesn't support javascript.
loading
Molecular Structure of the Human CFTR Ion Channel.
Liu, Fangyu; Zhang, Zhe; Csanády, László; Gadsby, David C; Chen, Jue.
Afiliación
  • Liu F; Laboratory of Membrane Biophysics and Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA; Tri-Institutional Training Program in Chemical Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.
  • Zhang Z; Laboratory of Membrane Biophysics and Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA; Howard Hughes Medical Institute, 4000 Jones Bridge Road, Chevy Chase, MD 20815, USA.
  • Csanády L; Department of Medical Biochemistry and MTA-SE Ion Channel Research Group, Semmelweis University, Budapest 1094, Hungary.
  • Gadsby DC; Laboratory of Cardiac/Membrane Physiology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.
  • Chen J; Laboratory of Membrane Biophysics and Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA; Howard Hughes Medical Institute, 4000 Jones Bridge Road, Chevy Chase, MD 20815, USA. Electronic address: juechen@rockefeller.edu.
Cell ; 169(1): 85-95.e8, 2017 03 23.
Article en En | MEDLINE | ID: mdl-28340353
The cystic fibrosis transmembrane conductance regulator (CFTR) is an ATP-binding cassette (ABC) transporter that uniquely functions as an ion channel. Here, we present a 3.9 Å structure of dephosphorylated human CFTR without nucleotides, determined by electron cryomicroscopy (cryo-EM). Close resemblance of this human CFTR structure to zebrafish CFTR under identical conditions reinforces its relevance for understanding CFTR function. The human CFTR structure reveals a previously unresolved helix belonging to the R domain docked inside the intracellular vestibule, precluding channel opening. By analyzing the sigmoid time course of CFTR current activation, we propose that PKA phosphorylation of the R domain is enabled by its infrequent spontaneous disengagement, which also explains residual ATPase and gating activity of dephosphorylated CFTR. From comparison with MRP1, a feature distinguishing CFTR from all other ABC transporters is the helix-loop transition in transmembrane helix 8, which likely forms the structural basis for CFTR's channel function.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Regulador de Conductancia de Transmembrana de Fibrosis Quística Límite: Animals / Humans Idioma: En Revista: Cell Año: 2017 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Regulador de Conductancia de Transmembrana de Fibrosis Quística Límite: Animals / Humans Idioma: En Revista: Cell Año: 2017 Tipo del documento: Article País de afiliación: Estados Unidos