Comparative Subcellular Proteomics Analysis of Susceptible and Near-isogenic Resistant Bombyx mori (Lepidoptera) Larval Midgut Response to BmNPV infection.
Sci Rep
; 7: 45690, 2017 03 31.
Article
en En
| MEDLINE
| ID: mdl-28361957
The molecular mechanism of silkworm resistance to Bombyx mori nucleopolyhedrovirus (BmNPV) infection remains largely unclear. Accumulating evidence suggests that subcellular fractionation combined with proteomics is an ideal technique to analyse host antiviral mechanisms. To clarify the anti-BmNPV mechanism of the silkworm, the near-isogenic line BC9 (resistant strain) and the recurrent parent P50 (susceptible strain) were used in a comparative subcellular proteomics study. Two-dimensional gel electrophoresis (2-DE) combined with mass spectrometry (MS) was conducted on proteins extracted from the cytosol, mitochondria, and microsomes of BmNPV-infected and control larval midguts. A total of 87 proteins were successfully identified from the three subcellular fractions. These proteins were primarily involved in energy metabolism, protein metabolism, signalling pathways, disease, and transport. In particular, disease-relevant proteins were especially changed in microsomes. After infection with BmNPV, differentially expressed proteins (DEPs) primarily appeared in the cytosolic and microsomal fractions, which indicated that these two fractions might play a more important role in the response to BmNPV infection. After removing genetic background and individual immune stress response proteins, 16 proteins were identified as potentially involved in repressing BmNPV infection. Of these proteins, the differential expression patterns of 8 proteins according to reverse transcription quantitative PCR (RT-qPCR) analyses were consistent with the 2-DE results.
Texto completo:
1
Colección:
01-internacional
Banco de datos:
MEDLINE
Asunto principal:
Bombyx
/
Tracto Gastrointestinal
Límite:
Animals
Idioma:
En
Revista:
Sci Rep
Año:
2017
Tipo del documento:
Article