Electric Fields and Enzyme Catalysis.
Annu Rev Biochem
; 86: 387-415, 2017 06 20.
Article
en En
| MEDLINE
| ID: mdl-28375745
What happens inside an enzyme's active site to allow slow and difficult chemical reactions to occur so rapidly? This question has occupied biochemists' attention for a long time. Computer models of increasing sophistication have predicted an important role for electrostatic interactions in enzymatic reactions, yet this hypothesis has proved vexingly difficult to test experimentally. Recent experiments utilizing the vibrational Stark effect make it possible to measure the electric field a substrate molecule experiences when bound inside its enzyme's active site. These experiments have provided compelling evidence supporting a major electrostatic contribution to enzymatic catalysis. Here, we review these results and develop a simple model for electrostatic catalysis that enables us to incorporate disparate concepts introduced by many investigators to describe how enzymes work into a more unified framework stressing the importance of electric fields at the active site.
Palabras clave
Texto completo:
1
Colección:
01-internacional
Banco de datos:
MEDLINE
Asunto principal:
Pseudomonas
/
Esteroide Isomerasas
/
Proteínas Bacterianas
/
Hidrolasas
/
Cetosteroides
Tipo de estudio:
Prognostic_studies
Idioma:
En
Revista:
Annu Rev Biochem
Año:
2017
Tipo del documento:
Article