Your browser doesn't support javascript.
loading
Photoacoustic imaging beyond the acoustic diffraction-limit with dynamic speckle illumination and sparse joint support recovery.
Opt Express ; 25(5): 4875-4886, 2017 Mar 06.
Article en En | MEDLINE | ID: mdl-28380755
ABSTRACT
In deep tissue photoacoustic imaging the spatial resolution is inherently limited by the acoustic wavelength. Recently, it was demonstrated that it is possible to surpass the acoustic diffraction limit by analyzing fluctuations in a set of photoacoustic images obtained under unknown speckle illumination patterns. Here, we purpose an approach to boost reconstruction fidelity and resolution, while reducing the number of acquired images by utilizing a compressed sensing computational reconstruction framework. The approach takes into account prior knowledge of the system response and sparsity of the target structure. We provide proof of principle experiments of the approach and demonstrate that improved performance is obtained when both speckle fluctuations and object priors are used. We numerically study the expected performance as a function of the measurement's signal to noise ratio and sample spatial-sparsity. The presented reconstruction framework can be applied to analyze existing photoacoustic experimental data sets containing dynamic fluctuations.

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Opt Express Asunto de la revista: OFTALMOLOGIA Año: 2017 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Opt Express Asunto de la revista: OFTALMOLOGIA Año: 2017 Tipo del documento: Article