Your browser doesn't support javascript.
loading
Genomic profiles of low-grade murine gliomas evolve during progression to glioblastoma.
Vitucci, Mark; Irvin, David M; McNeill, Robert S; Schmid, Ralf S; Simon, Jeremy M; Dhruv, Harshil D; Siegel, Marni B; Werneke, Andrea M; Bash, Ryan E; Kim, Seungchan; Berens, Michael E; Miller, C Ryan.
Afiliación
  • Vitucci M; Curriculum in Genetics and Molecular Biology, Pathobiology and Translational Science Graduate Program, Division of Neuropathology, Department of Pathology and Laboratory Medicine, Carolina Institute for Developmental Disabilities and Department of Genetics, Lineberger Comprehensive Cancer Center, Ne
  • Irvin DM; Curriculum in Genetics and Molecular Biology, Pathobiology and Translational Science Graduate Program, Division of Neuropathology, Department of Pathology and Laboratory Medicine, Carolina Institute for Developmental Disabilities and Department of Genetics, Lineberger Comprehensive Cancer Center, Ne
  • McNeill RS; Curriculum in Genetics and Molecular Biology, Pathobiology and Translational Science Graduate Program, Division of Neuropathology, Department of Pathology and Laboratory Medicine, Carolina Institute for Developmental Disabilities and Department of Genetics, Lineberger Comprehensive Cancer Center, Ne
  • Schmid RS; Curriculum in Genetics and Molecular Biology, Pathobiology and Translational Science Graduate Program, Division of Neuropathology, Department of Pathology and Laboratory Medicine, Carolina Institute for Developmental Disabilities and Department of Genetics, Lineberger Comprehensive Cancer Center, Ne
  • Simon JM; Curriculum in Genetics and Molecular Biology, Pathobiology and Translational Science Graduate Program, Division of Neuropathology, Department of Pathology and Laboratory Medicine, Carolina Institute for Developmental Disabilities and Department of Genetics, Lineberger Comprehensive Cancer Center, Ne
  • Dhruv HD; Curriculum in Genetics and Molecular Biology, Pathobiology and Translational Science Graduate Program, Division of Neuropathology, Department of Pathology and Laboratory Medicine, Carolina Institute for Developmental Disabilities and Department of Genetics, Lineberger Comprehensive Cancer Center, Ne
  • Siegel MB; Curriculum in Genetics and Molecular Biology, Pathobiology and Translational Science Graduate Program, Division of Neuropathology, Department of Pathology and Laboratory Medicine, Carolina Institute for Developmental Disabilities and Department of Genetics, Lineberger Comprehensive Cancer Center, Ne
  • Werneke AM; Curriculum in Genetics and Molecular Biology, Pathobiology and Translational Science Graduate Program, Division of Neuropathology, Department of Pathology and Laboratory Medicine, Carolina Institute for Developmental Disabilities and Department of Genetics, Lineberger Comprehensive Cancer Center, Ne
  • Bash RE; Curriculum in Genetics and Molecular Biology, Pathobiology and Translational Science Graduate Program, Division of Neuropathology, Department of Pathology and Laboratory Medicine, Carolina Institute for Developmental Disabilities and Department of Genetics, Lineberger Comprehensive Cancer Center, Ne
  • Kim S; Curriculum in Genetics and Molecular Biology, Pathobiology and Translational Science Graduate Program, Division of Neuropathology, Department of Pathology and Laboratory Medicine, Carolina Institute for Developmental Disabilities and Department of Genetics, Lineberger Comprehensive Cancer Center, Ne
  • Berens ME; Curriculum in Genetics and Molecular Biology, Pathobiology and Translational Science Graduate Program, Division of Neuropathology, Department of Pathology and Laboratory Medicine, Carolina Institute for Developmental Disabilities and Department of Genetics, Lineberger Comprehensive Cancer Center, Ne
  • Miller CR; Curriculum in Genetics and Molecular Biology, Pathobiology and Translational Science Graduate Program, Division of Neuropathology, Department of Pathology and Laboratory Medicine, Carolina Institute for Developmental Disabilities and Department of Genetics, Lineberger Comprehensive Cancer Center, Ne
Neuro Oncol ; 19(9): 1237-1247, 2017 Sep 01.
Article en En | MEDLINE | ID: mdl-28398584
BACKGROUND: Gliomas are diverse neoplasms with multiple molecular subtypes. How tumor-initiating mutations relate to molecular subtypes as these tumors evolve during malignant progression remains unclear. METHODS: We used genetically engineered mouse models, histopathology, genetic lineage tracing, expression profiling, and copy number analyses to examine how genomic tumor diversity evolves during the course of malignant progression from low- to high-grade disease. RESULTS: Knockout of all 3 retinoblastoma (Rb) family proteins was required to initiate low-grade tumors in adult mouse astrocytes. Mutations activating mitogen-activated protein kinase signaling, specifically KrasG12D, potentiated Rb-mediated tumorigenesis. Low-grade tumors showed mutant Kras-specific transcriptome profiles but lacked copy number mutations. These tumors stochastically progressed to high-grade, in part through acquisition of copy number mutations. High-grade tumor transcriptomes were heterogeneous and consisted of 3 subtypes that mimicked human mesenchymal, proneural, and neural glioblastomas. Subtypes were confirmed in validation sets of high-grade mouse tumors initiated by different driver mutations as well as human patient-derived xenograft models and glioblastoma tumors. CONCLUSION: These results suggest that oncogenic driver mutations influence the genomic profiles of low-grade tumors and that these, as well as progression-acquired mutations, contribute strongly to the genomic heterogeneity across high-grade tumors.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Neoplasias Encefálicas / Glioblastoma / Glioma Límite: Animals Idioma: En Revista: Neuro Oncol Asunto de la revista: NEOPLASIAS / NEUROLOGIA Año: 2017 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Neoplasias Encefálicas / Glioblastoma / Glioma Límite: Animals Idioma: En Revista: Neuro Oncol Asunto de la revista: NEOPLASIAS / NEUROLOGIA Año: 2017 Tipo del documento: Article