Your browser doesn't support javascript.
loading
MAGERI: Computational pipeline for molecular-barcoded targeted resequencing.
Shugay, Mikhail; Zaretsky, Andrew R; Shagin, Dmitriy A; Shagina, Irina A; Volchenkov, Ivan A; Shelenkov, Andrew A; Lebedin, Mikhail Y; Bagaev, Dmitriy V; Lukyanov, Sergey; Chudakov, Dmitriy M.
Afiliación
  • Shugay M; Shemyakin-Ovchinnikov Institute of bioorganic chemistry RAS, Miklukho-Maklaya 16/10, Moscow, Russia.
  • Zaretsky AR; Pirogov Russian National Research Medical University, Ostrovityanova 1, Moscow, Russia.
  • Shagin DA; Central European Institute of Technology, Masaryk University, Brno, Czech republic.
  • Shagina IA; Shemyakin-Ovchinnikov Institute of bioorganic chemistry RAS, Miklukho-Maklaya 16/10, Moscow, Russia.
  • Volchenkov IA; Pirogov Russian National Research Medical University, Ostrovityanova 1, Moscow, Russia.
  • Shelenkov AA; Evrogen JSC, Miklukho-Maklaya 16/10, Moscow, Russia.
  • Lebedin MY; Shemyakin-Ovchinnikov Institute of bioorganic chemistry RAS, Miklukho-Maklaya 16/10, Moscow, Russia.
  • Bagaev DV; Pirogov Russian National Research Medical University, Ostrovityanova 1, Moscow, Russia.
  • Lukyanov S; Shemyakin-Ovchinnikov Institute of bioorganic chemistry RAS, Miklukho-Maklaya 16/10, Moscow, Russia.
  • Chudakov DM; Pirogov Russian National Research Medical University, Ostrovityanova 1, Moscow, Russia.
PLoS Comput Biol ; 13(5): e1005480, 2017 05.
Article en En | MEDLINE | ID: mdl-28475621
Unique molecular identifiers (UMIs) show outstanding performance in targeted high-throughput resequencing, being the most promising approach for the accurate identification of rare variants in complex DNA samples. This approach has application in multiple areas, including cancer diagnostics, thus demanding dedicated software and algorithms. Here we introduce MAGERI, a computational pipeline that efficiently handles all caveats of UMI-based analysis to obtain high-fidelity mutation profiles and call ultra-rare variants. Using an extensive set of benchmark datasets including gold-standard biological samples with known variant frequencies, cell-free DNA from tumor patient blood samples and publicly available UMI-encoded datasets we demonstrate that our method is both robust and efficient in calling rare variants. The versatility of our software is supported by accurate results obtained for both tumor DNA and viral RNA samples in datasets prepared using three different UMI-based protocols.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Programas Informáticos / Biología Computacional / Secuenciación de Nucleótidos de Alto Rendimiento Tipo de estudio: Guideline Límite: Humans Idioma: En Revista: PLoS Comput Biol Asunto de la revista: BIOLOGIA / INFORMATICA MEDICA Año: 2017 Tipo del documento: Article País de afiliación: Rusia

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Programas Informáticos / Biología Computacional / Secuenciación de Nucleótidos de Alto Rendimiento Tipo de estudio: Guideline Límite: Humans Idioma: En Revista: PLoS Comput Biol Asunto de la revista: BIOLOGIA / INFORMATICA MEDICA Año: 2017 Tipo del documento: Article País de afiliación: Rusia