Your browser doesn't support javascript.
loading
DTWscore: differential expression and cell clustering analysis for time-series single-cell RNA-seq data.
Wang, Zhuo; Jin, Shuilin; Liu, Guiyou; Zhang, Xiurui; Wang, Nan; Wu, Deliang; Hu, Yang; Zhang, Chiping; Jiang, Qinghua; Xu, Li; Wang, Yadong.
Afiliación
  • Wang Z; Department of Mathematics, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, West Dazhi Street, China.
  • Jin S; Department of Mathematics, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, West Dazhi Street, China.
  • Liu G; School of Computer Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, West Dazhi Street, China.
  • Zhang X; Department of Mathematics, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, West Dazhi Street, China.
  • Wang N; Department of Mathematics, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, West Dazhi Street, China.
  • Wu D; Department of Mathematics, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, West Dazhi Street, China.
  • Hu Y; School of Computer Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, West Dazhi Street, China.
  • Zhang C; Department of Mathematics, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, West Dazhi Street, China. cpz@hit.edu.cn.
  • Jiang Q; School of Computer Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, West Dazhi Street, China. jiangqinghua@hit.edu.cn.
  • Xu L; College of Computer Science and Technology, Harbin Engineering University, Harbin, Nantong Street, Heilongjiang, 150001, China.
  • Wang Y; School of Computer Science and Technology, Harbin Institute of Technology, Harbin, Nantong Street, Heilongjiang, 150001, China.
BMC Bioinformatics ; 18(1): 270, 2017 May 23.
Article en En | MEDLINE | ID: mdl-28535748
BACKGROUND: The development of single-cell RNA sequencing has enabled profound discoveries in biology, ranging from the dissection of the composition of complex tissues to the identification of novel cell types and dynamics in some specialized cellular environments. However, the large-scale generation of single-cell RNA-seq (scRNA-seq) data collected at multiple time points remains a challenge to effective measurement gene expression patterns in transcriptome analysis. RESULTS: We present an algorithm based on the Dynamic Time Warping score (DTWscore) combined with time-series data, that enables the detection of gene expression changes across scRNA-seq samples and recovery of potential cell types from complex mixtures of multiple cell types. CONCLUSIONS: The DTWscore successfully classify cells of different types with the most highly variable genes from time-series scRNA-seq data. The study was confined to methods that are implemented and available within the R framework. Sample datasets and R packages are available at https://github.com/xiaoxiaoxier/DTWscore .
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Algoritmos / Estadística como Asunto / Análisis de Secuencia de ARN / Perfilación de la Expresión Génica / Análisis de la Célula Individual Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: BMC Bioinformatics Asunto de la revista: INFORMATICA MEDICA Año: 2017 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Algoritmos / Estadística como Asunto / Análisis de Secuencia de ARN / Perfilación de la Expresión Génica / Análisis de la Célula Individual Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: BMC Bioinformatics Asunto de la revista: INFORMATICA MEDICA Año: 2017 Tipo del documento: Article País de afiliación: China