DTWscore: differential expression and cell clustering analysis for time-series single-cell RNA-seq data.
BMC Bioinformatics
; 18(1): 270, 2017 May 23.
Article
en En
| MEDLINE
| ID: mdl-28535748
BACKGROUND: The development of single-cell RNA sequencing has enabled profound discoveries in biology, ranging from the dissection of the composition of complex tissues to the identification of novel cell types and dynamics in some specialized cellular environments. However, the large-scale generation of single-cell RNA-seq (scRNA-seq) data collected at multiple time points remains a challenge to effective measurement gene expression patterns in transcriptome analysis. RESULTS: We present an algorithm based on the Dynamic Time Warping score (DTWscore) combined with time-series data, that enables the detection of gene expression changes across scRNA-seq samples and recovery of potential cell types from complex mixtures of multiple cell types. CONCLUSIONS: The DTWscore successfully classify cells of different types with the most highly variable genes from time-series scRNA-seq data. The study was confined to methods that are implemented and available within the R framework. Sample datasets and R packages are available at https://github.com/xiaoxiaoxier/DTWscore .
Palabras clave
Texto completo:
1
Colección:
01-internacional
Banco de datos:
MEDLINE
Asunto principal:
Algoritmos
/
Estadística como Asunto
/
Análisis de Secuencia de ARN
/
Perfilación de la Expresión Génica
/
Análisis de la Célula Individual
Tipo de estudio:
Prognostic_studies
Límite:
Humans
Idioma:
En
Revista:
BMC Bioinformatics
Asunto de la revista:
INFORMATICA MEDICA
Año:
2017
Tipo del documento:
Article
País de afiliación:
China