Your browser doesn't support javascript.
loading
Controlled Construction of Supported Cu+ Sites and Their Stabilization in MIL-100(Fe): Efficient Adsorbents for Benzothiophene Capture.
He, Qiu-Xia; Jiang, Yao; Tan, Peng; Liu, Xiao-Qin; Qin, Ju-Xiang; Sun, Lin-Bing.
Afiliación
  • He QX; State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Chemistry and Chemical Engineering, Nanjing Tech University , Nanjing 210009, China.
  • Jiang Y; State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Chemistry and Chemical Engineering, Nanjing Tech University , Nanjing 210009, China.
  • Tan P; State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Chemistry and Chemical Engineering, Nanjing Tech University , Nanjing 210009, China.
  • Liu XQ; State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Chemistry and Chemical Engineering, Nanjing Tech University , Nanjing 210009, China.
  • Qin JX; State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Chemistry and Chemical Engineering, Nanjing Tech University , Nanjing 210009, China.
  • Sun LB; State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Chemistry and Chemical Engineering, Nanjing Tech University , Nanjing 210009, China.
ACS Appl Mater Interfaces ; 9(35): 29445-29450, 2017 Sep 06.
Article en En | MEDLINE | ID: mdl-28745491
Cu+-containing materials have drawn much attention in various applications because they are versatile, nontoxic, and low-cost. However, the difficulty of selective reduction and the poor stability of Cu+ species are now pretty much the agendas. Here, controlled construction of supported Cu+ sites in MIL-100(Fe) was realized under mild conditions (200 °C, 5 h) via a vapor-reduction strategy (VRS). Remarkably, the yield of Cu+ reaches 100%, which is quite higher than the traditional high-temperature autoreduction method with a yield less than 50% even at 700 °C for 12 h. More importantly, during the treatment via VRS some Fe3+ in MIL-100(Fe) are reduced to Fe2+, which prevent the frequently happened oxidation of Cu+ due to the higher oxidation potential of Fe2+. These properties make Cu+/MIL-100(Fe) efficient in the capture of typical aromatic sulfur, benzothiophene, with regard to both adsorption capacity and stability. To our knowledge, the stabilization of Cu+ using the oxidation tendency of supports is achieved for the first time, which may offer a new idea to utilize active sites with weak stability.
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: ACS Appl Mater Interfaces Asunto de la revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Año: 2017 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: ACS Appl Mater Interfaces Asunto de la revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Año: 2017 Tipo del documento: Article País de afiliación: China