Your browser doesn't support javascript.
loading
Modulating the DNA polymerase ß reaction equilibrium to dissect the reverse reaction.
Shock, David D; Freudenthal, Bret D; Beard, William A; Wilson, Samuel H.
Afiliación
  • Shock DD; Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina, USA.
  • Freudenthal BD; Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina, USA.
  • Beard WA; Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas, USA.
  • Wilson SH; Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina, USA.
Nat Chem Biol ; 13(10): 1074-1080, 2017 Oct.
Article en En | MEDLINE | ID: mdl-28759020
ABSTRACT
DNA polymerases catalyze efficient and high-fidelity DNA synthesis. While this reaction favors nucleotide incorporation, polymerases also catalyze a reverse reaction, pyrophosphorolysis, that removes the DNA primer terminus and generates deoxynucleoside triphosphates. Because pyrophosphorolysis can influence polymerase fidelity and sensitivity to chain-terminating nucleosides, we analyzed pyrophosphorolysis with human DNA polymerase ß and found the reaction to be inefficient. The lack of a thio-elemental effect indicated that this reaction was limited by a nonchemical step. Use of a pyrophosphate analog, in which the bridging oxygen is replaced with an imido group (PNP), increased the rate of the reverse reaction and displayed a large thio-elemental effect, indicating that chemistry was now rate determining. Time-lapse crystallography with PNP captured structures consistent with a chemical equilibrium favoring the reverse reaction. These results highlight the importance of the bridging atom between the ß- and γ-phosphates of the incoming nucleotide in reaction chemistry, enzyme conformational changes, and overall reaction equilibrium.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Termodinámica / ADN Polimerasa beta Límite: Humans Idioma: En Revista: Nat Chem Biol Asunto de la revista: BIOLOGIA / QUIMICA Año: 2017 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Termodinámica / ADN Polimerasa beta Límite: Humans Idioma: En Revista: Nat Chem Biol Asunto de la revista: BIOLOGIA / QUIMICA Año: 2017 Tipo del documento: Article País de afiliación: Estados Unidos