Your browser doesn't support javascript.
loading
Label-Free Homogeneous Electrochemical Sensing Platform for Protein Kinase Assay Based on Carboxypeptidase Y-Assisted Peptide Cleavage and Vertically Ordered Mesoporous Silica Films.
Liu, Jinquan; Cheng, Hong; He, Dinggeng; He, Xiaoxiao; Wang, Kemin; Liu, Qiaoqiao; Zhao, Shuaiqi; Yang, Xudong.
Afiliación
  • Liu J; State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Hunan University , Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Changsha 410082, China.
  • Cheng H; State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Hunan University , Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Changsha 410082, China.
  • He D; State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Hunan University , Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Changsha 410082, China.
  • He X; State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Hunan University , Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Changsha 410082, China.
  • Wang K; State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Hunan University , Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Changsha 410082, China.
  • Liu Q; State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Hunan University , Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Changsha 410082, China.
  • Zhao S; State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Hunan University , Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Changsha 410082, China.
  • Yang X; State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Hunan University , Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Changsha 410082, China.
Anal Chem ; 89(17): 9062-9068, 2017 09 05.
Article en En | MEDLINE | ID: mdl-28786659
ABSTRACT
Presented herein is a simple, robust, and label-free homogeneous electrochemical sensing platform constructed for the detection of protein kinase activity and inhibition by integration of carboxypeptidase Y (CPY)-assisted peptide cleavage reaction and vertically ordered mesoporous silica films (MSFs). In this sensing platform, the substrate peptide composed of kinase-specific recognized sequence and multiple positively charged arginine (R) residues was ingeniously designed. In the presence of protein kinase, the substrate peptide was phosphorylated and then immediately resisted CPY cleavage. The phosphorylated peptide could be effectively adsorbed on the negatively charged surface of MSFs modified indium-tin oxide (ITO) electrode (MSFs/ITO) by noncovalent electrostatic attraction. The adsorbed peptide was subsequently used as a hamper to prevent the diffusion of electroactive probe (FcMeOH) to the electrode surface through the vertically aligned nanopores, resulting in a detectable reduction of electrochemical signal. As demonstrated for the feasibility and universality of the sensing platform, both protein kinase A (PKA) and casein kinase II (CK2) were selected as the models, and the detection limits were determined to be 0.083 and 0.095 UmL-1, respectively. This sensing platform had the merits of simplicity, easy manipulation, and improved phosphorylation and cleavage efficiency, which benefited from homogeneous solution reactions without sophisticated modification or immobilization procedures. In addition, given the key role of inhibition and protein kinase activity detection in cell lysates, this proposed sensing platform showed great potential in kinase-related bioanalysis and clinical biomedicine.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Proteínas Quinasas / Dióxido de Silicio / Catepsina A / Técnicas Electroquímicas Límite: Humans Idioma: En Revista: Anal Chem Año: 2017 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Proteínas Quinasas / Dióxido de Silicio / Catepsina A / Técnicas Electroquímicas Límite: Humans Idioma: En Revista: Anal Chem Año: 2017 Tipo del documento: Article País de afiliación: China