Your browser doesn't support javascript.
loading
Two NAD-linked redox shuttles maintain the peroxisomal redox balance in Saccharomyces cerevisiae.
Al-Saryi, Nadal A; Al-Hejjaj, Murtakab Y; van Roermund, Carlo W T; Hulmes, Georgia E; Ekal, Lakhan; Payton, Chantell; Wanders, Ronald J A; Hettema, Ewald H.
Afiliación
  • Al-Saryi NA; Department of Molecular Biology, University of Sheffield, Sheffield, UK.
  • Al-Hejjaj MY; Department of Biology, College of Science, Al Mustansiriyah University, Baghdad, Iraq.
  • van Roermund CWT; Department of Molecular Biology, University of Sheffield, Sheffield, UK.
  • Hulmes GE; Department of Microbiology, College of Veterinary Medicine, University of Basrah, Basrah, Iraq.
  • Ekal L; Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Academic Medical Center, Amsterdam, The Netherlands.
  • Payton C; Department of Molecular Biology, University of Sheffield, Sheffield, UK.
  • Wanders RJA; Department of Molecular Biology, University of Sheffield, Sheffield, UK.
  • Hettema EH; School of Life Sciences, University of Lincoln, Lincoln, UK.
Sci Rep ; 7(1): 11868, 2017 09 19.
Article en En | MEDLINE | ID: mdl-28928432
In Saccharomyces cerevisiae, peroxisomes are the sole site of fatty acid ß-oxidation. During this process, NAD+ is reduced to NADH. When cells are grown on oleate medium, peroxisomal NADH is reoxidised to NAD+ by malate dehydrogenase (Mdh3p) and reduction equivalents are transferred to the cytosol by the malate/oxaloacetate shuttle. The ultimate step in lysine biosynthesis, the NAD+-dependent dehydrogenation of saccharopine to lysine, is another NAD+-dependent reaction performed inside peroxisomes. We have found that in glucose grown cells, both the malate/oxaloacetate shuttle and a glycerol-3-phosphate dehydrogenase 1(Gpd1p)-dependent shuttle are able to maintain the intraperoxisomal redox balance. Single mutants in MDH3 or GPD1 grow on lysine-deficient medium, but an mdh3/gpd1Δ double mutant accumulates saccharopine and displays lysine bradytrophy. Lysine biosynthesis is restored when saccharopine dehydrogenase is mislocalised to the cytosol in mdh3/gpd1Δ cells. We conclude that the availability of intraperoxisomal NAD+ required for saccharopine dehydrogenase activity can be sustained by both shuttles. The extent to which each of these shuttles contributes to the intraperoxisomal redox balance may depend on the growth medium. We propose that the presence of multiple peroxisomal redox shuttles allows eukaryotic cells to maintain the peroxisomal redox status under different metabolic conditions.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Saccharomyces cerevisiae / Peroxisomas / Proteínas de Saccharomyces cerevisiae / Glicerol-3-Fosfato Deshidrogenasa (NAD/) / Malato Deshidrogenasa / NAD Idioma: En Revista: Sci Rep Año: 2017 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Saccharomyces cerevisiae / Peroxisomas / Proteínas de Saccharomyces cerevisiae / Glicerol-3-Fosfato Deshidrogenasa (NAD/) / Malato Deshidrogenasa / NAD Idioma: En Revista: Sci Rep Año: 2017 Tipo del documento: Article