Your browser doesn't support javascript.
loading
Orthologue chemical space and its influence on target prediction.
Mervin, Lewis H; Bulusu, Krishna C; Kalash, Leen; Afzal, Avid M; Svensson, Fredrik; Firth, Mike A; Barrett, Ian; Engkvist, Ola; Bender, Andreas.
Afiliación
  • Mervin LH; Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Cambridge, UK.
  • Bulusu KC; Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Cambridge, UK.
  • Kalash L; Oncology Innovative Medicines and Early Development, AstraZeneca, Cambridge, UK.
  • Afzal AM; Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Cambridge, UK.
  • Svensson F; Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Cambridge, UK.
  • Firth MA; Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Cambridge, UK.
  • Barrett I; Discovery Sciences, AstraZeneca R&D, Cambridge Science Park, Cambridge, UK.
  • Engkvist O; Discovery Sciences, AstraZeneca R&D, Cambridge Science Park, Cambridge, UK.
  • Bender A; Discovery Sciences, AstraZeneca R&D Gothenburg, Mölndal, Sweden.
Bioinformatics ; 34(1): 72-79, 2018 01 01.
Article en En | MEDLINE | ID: mdl-28961699
Motivation: In silico approaches often fail to utilize bioactivity data available for orthologous targets due to insufficient evidence highlighting the benefit for such an approach. Deeper investigation into orthologue chemical space and its influence toward expanding compound and target coverage is necessary to improve the confidence in this practice. Results: Here we present analysis of the orthologue chemical space in ChEMBL and PubChem and its impact on target prediction. We highlight the number of conflicting bioactivities between human and orthologues is low and annotations are overall compatible. Chemical space analysis shows orthologues are chemically dissimilar to human with high intra-group similarity, suggesting they could effectively extend the chemical space modelled. Based on these observations, we show the benefit of orthologue inclusion in terms of novel target coverage. We also benchmarked predictive models using a time-series split and also using bioactivities from Chemistry Connect and HTS data available at AstraZeneca, showing that orthologue bioactivity inclusion statistically improved performance. Availability and implementation: Orthologue-based bioactivity prediction and the compound training set are available at www.github.com/lhm30/PIDGINv2. Contact: ab454@cam.ac.uk. Supplementary information: Supplementary data are available at Bioinformatics online.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Simulación por Computador / Proteínas / Homología de Secuencia de Aminoácido / Biología Computacional / Descubrimiento de Drogas Tipo de estudio: Prognostic_studies / Risk_factors_studies Límite: Animals / Humans Idioma: En Revista: Bioinformatics Asunto de la revista: INFORMATICA MEDICA Año: 2018 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Simulación por Computador / Proteínas / Homología de Secuencia de Aminoácido / Biología Computacional / Descubrimiento de Drogas Tipo de estudio: Prognostic_studies / Risk_factors_studies Límite: Animals / Humans Idioma: En Revista: Bioinformatics Asunto de la revista: INFORMATICA MEDICA Año: 2018 Tipo del documento: Article