Your browser doesn't support javascript.
loading
Quantifying Mesoscale Neuroanatomy Using X-Ray Microtomography.
Dyer, Eva L; Gray Roncal, William; Prasad, Judy A; Fernandes, Hugo L; Gürsoy, Doga; De Andrade, Vincent; Fezzaa, Kamel; Xiao, Xianghui; Vogelstein, Joshua T; Jacobsen, Chris; Körding, Konrad P; Kasthuri, Narayanan.
Afiliación
  • Dyer EL; Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332.
  • Gray Roncal W; The Johns Hopkins University Applied Physics Laboratory, Laurel, MD, 20723.
  • Prasad JA; Dept. of Computer Science, The Johns Hopkins University, Baltimore, MD, 21218.
  • Fernandes HL; Dept. of Neurobiology, University of Chicago, Chicago, IL, 60637.
  • Gürsoy D; Dept. of Physical Medicine and Rehabilitation, Northwestern University, Chicago, IL, 60611.
  • De Andrade V; Sensory Motor Performance Program, Rehabilitation Institute of Chicago, Chicago, IL, 60611.
  • Fezzaa K; Advanced Photon Source, Argonne National Laboratory, Lemont, IL, 60439.
  • Xiao X; Advanced Photon Source, Argonne National Laboratory, Lemont, IL, 60439.
  • Vogelstein JT; Advanced Photon Source, Argonne National Laboratory, Lemont, IL, 60439.
  • Jacobsen C; Advanced Photon Source, Argonne National Laboratory, Lemont, IL, 60439.
  • Körding KP; Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD, 21205.
  • Kasthuri N; Institute of Computational Medicine, The Johns Hopkins University, Baltimore, MD, 21218.
eNeuro ; 4(5)2017.
Article en En | MEDLINE | ID: mdl-29085899
Methods for resolving the three-dimensional (3D) microstructure of the brain typically start by thinly slicing and staining the brain, followed by imaging numerous individual sections with visible light photons or electrons. In contrast, X-rays can be used to image thick samples, providing a rapid approach for producing large 3D brain maps without sectioning. Here we demonstrate the use of synchrotron X-ray microtomography (µCT) for producing mesoscale (∼1 µm 3 resolution) brain maps from millimeter-scale volumes of mouse brain. We introduce a pipeline for µCT-based brain mapping that develops and integrates methods for sample preparation, imaging, and automated segmentation of cells, blood vessels, and myelinated axons, in addition to statistical analyses of these brain structures. Our results demonstrate that X-ray tomography achieves rapid quantification of large brain volumes, complementing other brain mapping and connectomics efforts.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Encéfalo / Microtomografía por Rayos X Límite: Animals Idioma: En Revista: ENeuro Año: 2017 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Encéfalo / Microtomografía por Rayos X Límite: Animals Idioma: En Revista: ENeuro Año: 2017 Tipo del documento: Article