Your browser doesn't support javascript.
loading
The effects of intravoxel contrast agent diffusion on the analysis of DCE-MRI data in realistic tissue domains.
Woodall, Ryan T; Barnes, Stephanie L; Hormuth, David A; Sorace, Anna G; Quarles, C Chad; Yankeelov, Thomas E.
Afiliación
  • Woodall RT; Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas, USA.
  • Barnes SL; Center for Computational Oncology, Institute for Computational and Engineering Sciences, The University of Texas at Austin, Austin, Texas, USA.
  • Hormuth DA; Center for Computational Oncology, Institute for Computational and Engineering Sciences, The University of Texas at Austin, Austin, Texas, USA.
  • Sorace AG; Center for Computational Oncology, Institute for Computational and Engineering Sciences, The University of Texas at Austin, Austin, Texas, USA.
  • Quarles CC; Department of Internal Medicine, The University of Texas at Austin, Austin, Texas, USA.
  • Yankeelov TE; Barrow Neurological Institute, Phoenix, Arizona, USA.
Magn Reson Med ; 80(1): 330-340, 2018 07.
Article en En | MEDLINE | ID: mdl-29115690
ABSTRACT

PURPOSE:

Quantitative evaluation of dynamic contrast enhanced MRI (DCE-MRI) allows for estimating perfusion, vessel permeability, and tissue volume fractions by fitting signal intensity curves to pharmacokinetic models. These compart mental models assume rapid equilibration of contrast agent within each voxel. However, there is increasing evidence that this assumption is violated for small molecular weight gadolinium chelates. To evaluate the error introduced by this invalid assumption, we simulated DCE-MRI experiments with volume fractions computed from entire histological tumor cross-sections obtained from murine studies.

METHODS:

A 2D finite element model of a diffusion-compensated Tofts-Kety model was developed to simulate dynamic T1 signal intensity data. Digitized histology slices were segmented into vascular (vp ), cellular and extravascular extracellular (ve ) volume fractions. Within this domain, Ktrans (the volume transfer constant) was assigned values from 0 to 0.5 min-1 . A representative signal enhancement curve was then calculated for each imaging voxel and the resulting simulated DCE-MRI data analyzed by the extended Tofts-Kety model.

RESULTS:

Results indicated parameterization errors of -19.1% ± 10.6% in Ktrans , -4.92% ± 3.86% in ve , and 79.5% ± 16.8% in vp for use of Gd-DTPA over 4 tumor domains.

CONCLUSION:

These results indicate a need for revising the standard model of DCE-MRI to incorporate a correction for slow diffusion of contrast agent. Magn Reson Med 80330-340, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Imagen por Resonancia Magnética / Medios de Contraste / Gadolinio / Neoplasias Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Revista: Magn Reson Med Asunto de la revista: DIAGNOSTICO POR IMAGEM Año: 2018 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Imagen por Resonancia Magnética / Medios de Contraste / Gadolinio / Neoplasias Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Revista: Magn Reson Med Asunto de la revista: DIAGNOSTICO POR IMAGEM Año: 2018 Tipo del documento: Article País de afiliación: Estados Unidos