Your browser doesn't support javascript.
loading
A minimal mechanics model for mechanosensing of substrate rigidity gradient in durotaxis.
Marzban, Bahador; Yi, Xin; Yuan, Hongyan.
Afiliación
  • Marzban B; Department of Mechanical, Industrial and Systems Engineering, University of Rhode Island, Kingston, RI, 02881, USA.
  • Yi X; Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing, 100871, China.
  • Yuan H; Department of Mechanical, Industrial and Systems Engineering, University of Rhode Island, Kingston, RI, 02881, USA. hongyan_yuan@uri.edu.
Biomech Model Mechanobiol ; 17(3): 915-922, 2018 Jun.
Article en En | MEDLINE | ID: mdl-29354863
Durotaxis refers to the phenomenon in which cells can sense the spatial gradient of the substrate rigidity in the process of cell migration. A conceptual two-part theory consisting of the focal adhesion force generation and mechanotransduction has been proposed previously by Lo et al. to explain the mechanism underlying durotaxis. In the present work, we are concerned with the first part of the theory: how exactly is the larger focal adhesion force generated in the part of the cell adhering to the stiffer region of the substrate? Using a simple elasticity model and by assuming the cell adheres to the substrate continuously underneath the whole cell body, we show that the mechanics principle of static equilibrium alone is sufficient to account for the generation of the larger traction stress on the stiffer region of the substrate. We believe that our model presents a simple mechanistic understanding of mechanosensing of substrate stiffness gradient at the cellular scale, which can be incorporated in more sophisticated mechanobiochemical models to address complex problems in mechanobiology and bioengineering.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Movimiento Celular / Mecanotransducción Celular / Modelos Biológicos Idioma: En Revista: Biomech Model Mechanobiol Asunto de la revista: ENGENHARIA BIOMEDICA Año: 2018 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Movimiento Celular / Mecanotransducción Celular / Modelos Biológicos Idioma: En Revista: Biomech Model Mechanobiol Asunto de la revista: ENGENHARIA BIOMEDICA Año: 2018 Tipo del documento: Article País de afiliación: Estados Unidos