Your browser doesn't support javascript.
loading
Evaluation of a Machine Learning-Based Prognostic Model for Unrelated Hematopoietic Cell Transplantation Donor Selection.
Buturovic, Ljubomir; Shelton, Jason; Spellman, Stephen R; Wang, Tao; Friedman, Lyssa; Loftus, David; Hesterberg, Lyndal; Woodring, Todd; Fleischhauer, Katharina; Hsu, Katharine C; Verneris, Michael R; Haagenson, Mike; Lee, Stephanie J.
Afiliación
  • Buturovic L; Clinical Persona Inc., East Palo Alto, California. Electronic address: ljubomir@clinicalpersona.com.
  • Shelton J; Telomere Diagnostics, Menlo Park, California.
  • Spellman SR; Center for International Blood and Marrow Transplant Research, Minneapolis, Minnesota.
  • Wang T; Center for International Blood and Marrow Transplant Research, Medical College of Wisconsin, Milwaukee, Wisconsin; Division of Biostatistics, Medical College of Wisconsin, Milwaukee, Wisconsin.
  • Friedman L; Telomere Diagnostics, Menlo Park, California.
  • Loftus D; Telomere Diagnostics, Menlo Park, California.
  • Hesterberg L; Telomere Diagnostics, Menlo Park, California.
  • Woodring T; Telomere Diagnostics, Menlo Park, California.
  • Fleischhauer K; Institute for Experimental Cellular Therapy, University Hospital Essen, Germany.
  • Hsu KC; Memorial Hospital Research Laboratories, Memorial Sloan Kettering Cancer Center, New York, New York.
  • Verneris MR; Children's blood and bone marrow diseases, Department of pediatrics, University of Colorado-Denver, Denver, Colorado.
  • Haagenson M; Center for International Blood and Marrow Transplant Research, Minneapolis, Minnesota.
  • Lee SJ; Center for International Blood and Marrow Transplant Research, Minneapolis, Minnesota; Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington.
Biol Blood Marrow Transplant ; 24(6): 1299-1306, 2018 06.
Article en En | MEDLINE | ID: mdl-29410341
The survival of patients undergoing hematopoietic cell transplantation (HCT) from unrelated donors for acute leukemia exhibits considerable variation, even after stringent genetic matching. To improve the donor selection process, we attempted to create an algorithm to quantify the likelihood of survival to 5 years after unrelated donor HCT for acute leukemia, based on the clinical characteristics of the donor selected. All standard clinical variables were included in the model, which also included average leukocyte telomere length of the donor based on its association with recipient survival in severe aplastic anemia, and links to multiple malignancies. We developed a multivariate classifier that assigned a Preferred or NotPreferred label to each prospective donor based on the survival of the recipient. In a previous analysis using a resampling method, recipients with donors labeled Preferred experienced clinically compelling better survival compared with those labeled NotPreferred by the test. However, in a pivotal validation study in an independent cohort of 522 patients, the overall survival of the Preferred and NotPreferred donor groups was not significantly different. Although machine learning approaches have successfully modeled other biological phenomena and have led to accurate predictive models, our attempt to predict HCT outcomes after unrelated donor transplantation was not successful.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Pronóstico / Trasplante de Células Madre Hematopoyéticas / Selección de Donante / Aprendizaje Automático Tipo de estudio: Diagnostic_studies / Evaluation_studies / Prognostic_studies Límite: Humans Idioma: En Revista: Biol Blood Marrow Transplant Asunto de la revista: HEMATOLOGIA / TRANSPLANTE Año: 2018 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Pronóstico / Trasplante de Células Madre Hematopoyéticas / Selección de Donante / Aprendizaje Automático Tipo de estudio: Diagnostic_studies / Evaluation_studies / Prognostic_studies Límite: Humans Idioma: En Revista: Biol Blood Marrow Transplant Asunto de la revista: HEMATOLOGIA / TRANSPLANTE Año: 2018 Tipo del documento: Article