Your browser doesn't support javascript.
loading
ChemTS: an efficient python library for de novo molecular generation.
Yang, Xiufeng; Zhang, Jinzhe; Yoshizoe, Kazuki; Terayama, Kei; Tsuda, Koji.
Afiliación
  • Yang X; Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan.
  • Zhang J; Department of Biosciences, INSA Lyon, Villeurbanne Cedex, France.
  • Yoshizoe K; RIKEN, Center for Advanced Intelligence Project, Tokyo, Japan.
  • Terayama K; Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan.
  • Tsuda K; Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan.
Sci Technol Adv Mater ; 18(1): 972-976, 2017.
Article en En | MEDLINE | ID: mdl-29435094
Automatic design of organic materials requires black-box optimization in a vast chemical space. In conventional molecular design algorithms, a molecule is built as a combination of predetermined fragments. Recently, deep neural network models such as variational autoencoders and recurrent neural networks (RNNs) are shown to be effective in de novo design of molecules without any predetermined fragments. This paper presents a novel Python library ChemTS that explores the chemical space by combining Monte Carlo tree search and an RNN. In a benchmarking problem of optimizing the octanol-water partition coefficient and synthesizability, our algorithm showed superior efficiency in finding high-scoring molecules. ChemTS is available at https://github.com/tsudalab/ChemTS.
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: Sci Technol Adv Mater Año: 2017 Tipo del documento: Article País de afiliación: Japón

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: Sci Technol Adv Mater Año: 2017 Tipo del documento: Article País de afiliación: Japón