Your browser doesn't support javascript.
loading
Metaboloptics: Visualization of the tumor functional landscape via metabolic and vascular imaging.
Martinez, Amy F; McCachren, Samuel S; Lee, Marianne; Murphy, Helen A; Zhu, Caigang; Crouch, Brian T; Martin, Hannah L; Erkanli, Alaattin; Rajaram, Narasimhan; Ashcraft, Kathleen A; Fontanella, Andrew N; Dewhirst, Mark W; Ramanujam, Nirmala.
Afiliación
  • Martinez AF; Department of Biomedical Engineering, Duke University, Durham, NC, USA. amyfmartinez@alumni.duke.edu.
  • McCachren SS; Department of Biomedical Engineering, Duke University, Durham, NC, USA.
  • Lee M; Department of Biomedical Engineering, Duke University, Durham, NC, USA.
  • Murphy HA; Department of Biomedical Engineering, Duke University, Durham, NC, USA.
  • Zhu C; Department of Biomedical Engineering, Duke University, Durham, NC, USA.
  • Crouch BT; Department of Biomedical Engineering, Duke University, Durham, NC, USA.
  • Martin HL; Department of Biomedical Engineering, Duke University, Durham, NC, USA.
  • Erkanli A; Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, NC, USA.
  • Rajaram N; Department of Biomedical Engineering, Duke University, Durham, NC, USA.
  • Ashcraft KA; Duke University Medical Center, Durham, NC, USA.
  • Fontanella AN; Department of Biomedical Engineering, Duke University, Durham, NC, USA.
  • Dewhirst MW; Duke University Medical Center, Durham, NC, USA.
  • Ramanujam N; Department of Biomedical Engineering, Duke University, Durham, NC, USA.
Sci Rep ; 8(1): 4171, 2018 03 08.
Article en En | MEDLINE | ID: mdl-29520098
ABSTRACT
Many cancers adeptly modulate metabolism to thrive in fluctuating oxygen conditions; however, current tools fail to image metabolic and vascular endpoints at spatial resolutions needed to visualize these adaptations in vivo. We demonstrate a high-resolution intravital microscopy technique to quantify glucose uptake, mitochondrial membrane potential (MMP), and SO2 to characterize the in vivo phentoypes of three distinct murine breast cancer lines. Tetramethyl rhodamine, ethyl ester (TMRE) was thoroughly validated to report on MMP in normal and tumor-bearing mice. Imaging MMP or glucose uptake together with vascular endpoints revealed that metastatic 4T1 tumors maintained increased glucose uptake across all SO2 ("Warburg effect"), and also showed increased MMP relative to normal tissue. Non-metastatic 67NR and 4T07 tumor lines both displayed increased MMP, but comparable glucose uptake, relative to normal tissue. The 4T1 peritumoral areas also showed a significant glycolytic shift relative to the tumor regions. During a hypoxic stress test, 4T1 tumors showed significant increases in MMP with corresponding significant drops in SO2, indicative of intensified mitochondrial metabolism. Conversely, 4T07 and 67NR tumors shifted toward glycolysis during hypoxia. Our findings underscore the importance of imaging metabolic endpoints within the context of a living microenvironment to gain insight into a tumor's adaptive behavior.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Compuestos Organometálicos / Tomografía Computarizada por Rayos X / Neoplasias Mamarias Animales / Imagen Óptica / Microscopía Intravital / Neovascularización Patológica Límite: Animals Idioma: En Revista: Sci Rep Año: 2018 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Compuestos Organometálicos / Tomografía Computarizada por Rayos X / Neoplasias Mamarias Animales / Imagen Óptica / Microscopía Intravital / Neovascularización Patológica Límite: Animals Idioma: En Revista: Sci Rep Año: 2018 Tipo del documento: Article País de afiliación: Estados Unidos