Photodissociation Spectroscopy of Cold Protonated Synephrine: Surprising Differences between IR-UV Hole-Burning and IR Photodissociation Spectroscopy of the O-H and N-H Modes.
J Phys Chem A
; 122(15): 3798-3804, 2018 Apr 19.
Article
en En
| MEDLINE
| ID: mdl-29608851
We report the UV and IR photofragmentation spectroscopies of protonated synephrine in a cryogenically cooled Paul trap. Single (UV or IR) and double (UV-UV and IR-UV) resonance spectroscopies have been performed and compared to quantum chemistry calculations, allowing the assignment of the lowest-energy conformer with two rotamers depending on the orientation of the phenol hydroxyl (OH) group. The IR-UV hole burning spectrum exhibits the four expected vibrational modes in the 3 µm region, i.e., the phenol OH, Cß-OH, and two NH2+ stretches. The striking difference is that, among these modes, only the free phenol OH mode is active through IRPD. The protonated amino group acts as a proton donor in the internal hydrogen bond and displays large frequency shifts upon isomerization expected during the multiphoton absorption process, leading to the so-called IRMPD transparency. More interestingly, while the Cß-OH is a proton acceptor group with moderate frequency shift for the different conformations, this mode is still inactive through IRPD.
Texto completo:
1
Colección:
01-internacional
Banco de datos:
MEDLINE
Idioma:
En
Revista:
J Phys Chem A
Asunto de la revista:
QUIMICA
Año:
2018
Tipo del documento:
Article
País de afiliación:
Francia