Your browser doesn't support javascript.
loading
Is Receptor-Interacting Protein Kinase 3 a Viable Therapeutic Target for Mycobacterium tuberculosis Infection?
Stutz, Michael D; Ojaimi, Samar; Ebert, Gregor; Pellegrini, Marc.
Afiliación
  • Stutz MD; Infection and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.
  • Ojaimi S; Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia.
  • Ebert G; Infection and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.
  • Pellegrini M; Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia.
Front Immunol ; 9: 1178, 2018.
Article en En | MEDLINE | ID: mdl-29892302
ABSTRACT
The dwindling list of antimicrobial agents exhibiting broad efficacy against clinical strains of Mycobacterium tuberculosis (Mtb) has forced the medical community to redefine current approaches to the treatment of tuberculosis (TB). Host receptor-interacting protein kinase 3 (RIPK3) has been flagged recently as a potential target, given that it is believed to regulate necroptosis-independent signaling pathways, which have been implicated in exacerbating several inflammatory conditions and which reportedly play a role in the necrosis of Mtb-infected macrophages. To examine the therapeutic potential of inhibiting RIPK3, we infected RIPK3-deficient mice with aerosolized Mtb. We found that the loss of RIPK3 did not alter overall disease outcomes, with deficient animals harboring similar bacterial numbers in the lungs and spleens compared to their wild-type counterparts. Mtb-infected macrophages were not rescued from dying by Ripk3 deletion, nor did this affect production of the pro-inflammatory cytokine IL-1ß, both in vitro and in vivo. Infiltration of immune cells into the lungs, as well as the activation of adaptive immunity, similarly was not overtly affected by the loss of RIPK3 signaling. Collectively, our data argue against a role of RIPK3 in mediating pathological inflammation or macrophage necrosis during Mtb disease pathogenesis and thus suggest that this host protein is unlikely to be an attractive therapeutic target for TB.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Tuberculosis Pulmonar / Transducción de Señal / Proteína Serina-Treonina Quinasas de Interacción con Receptores / Macrófagos / Mycobacterium tuberculosis Límite: Animals Idioma: En Revista: Front Immunol Año: 2018 Tipo del documento: Article País de afiliación: Australia

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Tuberculosis Pulmonar / Transducción de Señal / Proteína Serina-Treonina Quinasas de Interacción con Receptores / Macrófagos / Mycobacterium tuberculosis Límite: Animals Idioma: En Revista: Front Immunol Año: 2018 Tipo del documento: Article País de afiliación: Australia