Translational Control through Differential Ribosome Pausing during Amino Acid Limitation in Mammalian Cells.
Mol Cell
; 71(2): 229-243.e11, 2018 07 19.
Article
en En
| MEDLINE
| ID: mdl-30029003
Limitation for amino acids is thought to regulate translation in mammalian cells primarily by signaling through the kinases mTORC1 and GCN2. We find that a selective loss of arginine tRNA charging during limitation for arginine regulates translation through ribosome pausing at two of six arginine codons. Surprisingly, limitation for leucine, an essential and abundant amino acid in protein, results in little or no ribosome pausing. Chemical and genetic perturbation of mTORC1 and GCN2 signaling revealed that their robust response to leucine limitation prevents ribosome pausing, while an insufficient response to arginine limitation leads to loss of tRNA charging and ribosome pausing. Ribosome pausing decreases protein production and triggers premature ribosome termination without reducing mRNA levels. Together, our results suggest that amino acids that are not optimally sensed by the mTORC1 and GCN2 pathways still regulate translation through an evolutionarily conserved mechanism based on codon-specific ribosome pausing.
Palabras clave
Texto completo:
1
Colección:
01-internacional
Banco de datos:
MEDLINE
Asunto principal:
Biosíntesis de Proteínas
/
Factor 2 Eucariótico de Iniciación
/
Diana Mecanicista del Complejo 1 de la Rapamicina
Límite:
Animals
Idioma:
En
Revista:
Mol Cell
Asunto de la revista:
BIOLOGIA MOLECULAR
Año:
2018
Tipo del documento:
Article
País de afiliación:
Estados Unidos