Your browser doesn't support javascript.
loading
Combined effect of cabozantinib and gefitinib in crizotinib-resistant lung tumors harboring ROS1 fusions.
Kato, Yuka; Ninomiya, Kiichiro; Ohashi, Kadoaki; Tomida, Shuta; Makimoto, Go; Watanabe, Hiromi; Kudo, Kenichiro; Matsumoto, Shingo; Umemura, Shigeki; Goto, Koichi; Ichihara, Eiki; Ninomiya, Takashi; Kubo, Toshio; Sato, Akiko; Hotta, Katsuyuki; Tabata, Masahiro; Toyooka, Shinichi; Maeda, Yoshinobu; Kiura, Katsuyuki.
Afiliación
  • Kato Y; Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.
  • Ninomiya K; Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.
  • Ohashi K; Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.
  • Tomida S; Department of Respiratory Medicine, Okayama University Hospital, Okayama, Japan.
  • Makimoto G; Department of Biobank, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.
  • Watanabe H; Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.
  • Kudo K; Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.
  • Matsumoto S; Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.
  • Umemura S; Department of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, Japan.
  • Goto K; Department of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, Japan.
  • Ichihara E; Department of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, Japan.
  • Ninomiya T; Department of Respiratory Medicine, Okayama University Hospital, Okayama, Japan.
  • Kubo T; Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.
  • Sato A; Center for Clinical Oncology, Okayama University Hospital, Okayama, Japan.
  • Hotta K; Department of Respiratory Medicine, Okayama University Hospital, Okayama, Japan.
  • Tabata M; Department of Respiratory Medicine, Okayama University Hospital, Okayama, Japan.
  • Toyooka S; Center for Innovative Clinical Oncology, Okayama University Hospital, Okayama, Japan.
  • Maeda Y; Center for Clinical Oncology, Okayama University Hospital, Okayama, Japan.
  • Kiura K; Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.
Cancer Sci ; 109(10): 3149-3158, 2018 Oct.
Article en En | MEDLINE | ID: mdl-30053332
ABSTRACT
The ROS1 tyrosine kinase inhibitor (TKI) crizotinib has shown dramatic effects in patients with non-small cell lung cancer (NSCLC) harboring ROS1 fusion genes. However, patients inevitably develop resistance to this agent. Therefore, a new treatment strategy is required for lung tumors with ROS1 fusion genes. In the present study, lung cancer cell lines, HCC78 harboring SLC34A2-ROS1 and ABC-20 harboring CD74-ROS1, were used as cell line-based resistance models. Crizotinib-resistant HCC78R cells were established from HCC78. We comprehensively screened the resistant cells using a phosphor-receptor tyrosine kinase array and RNA sequence analysis by next-generation sequencing. HCC78R cells showed upregulation of HB-EGF and activation of epidermal growth factor receptor (EGFR) phosphorylation and the EGFR signaling pathway. Recombinant HB-EGF or EGF rendered HCC78 cells or ABC-20 cells resistant to crizotinib. RNA sequence analysis by next-generation sequencing revealed the upregulation of AXL in HCC78R cells. HCC78R cells showed marked sensitivity to EGFR-TKI or anti-EGFR antibody treatment in vitro. Combinations of an AXL inhibitor, cabozantinib or gilteritinib, and an EGFR-TKI were more effective against HCC78R cells than monotherapy with an EGFR-TKI or AXL inhibitor. The combination of cabozantinib and gefitinib effectively inhibited the growth of HCC78R tumors in an in vivo xenograft model of NOG mice. The results of this study indicated that HB-EGF/EGFR and AXL play roles in crizotinib resistance in lung cancers harboring ROS1 fusions. The combination of cabozantinib and EGFR-TKI may represent a useful alternative treatment strategy for patients with advanced NSCLC harboring ROS1 fusion genes.
Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología; Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico; Resistencia a Antineoplásicos/genética; Neoplasias Pulmonares/tratamiento farmacológico; Proteínas de Fusión Oncogénica/genética; Inhibidores de Proteínas Quinasas/farmacología; Anilidas/farmacología; Anilidas/uso terapéutico; Animales; Antígenos de Diferenciación de Linfocitos B/genética; Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico; Carcinoma de Pulmón de Células no Pequeñas/genética; Carcinoma de Pulmón de Células no Pequeñas/patología; Línea Celular Tumoral; Crizotinib; Receptores ErbB/metabolismo; Femenino; Gefitinib; Factor de Crecimiento Similar a EGF de Unión a Heparina/metabolismo; Antígenos de Histocompatibilidad Clase II/genética; Humanos; Neoplasias Pulmonares/genética; Neoplasias Pulmonares/patología; Ratones; Ratones Endogámicos NOD; Inhibidores de Proteínas Quinasas/uso terapéutico; Proteínas Tirosina Quinasas/antagonistas & inhibidores; Proteínas Tirosina Quinasas/genética; Proteínas Proto-Oncogénicas/antagonistas & inhibidores; Proteínas Proto-Oncogénicas/genética; Proteínas Proto-Oncogénicas/metabolismo; Pirazoles/farmacología; Pirazoles/uso terapéutico; Piridinas/farmacología; Piridinas/uso terapéutico; Quinazolinas/farmacología; Quinazolinas/uso terapéutico; Proteínas Tirosina Quinasas Receptoras/metabolismo; Proteínas Cotransportadoras de Sodio-Fosfato de Tipo IIb/genética; Regulación hacia Arriba; Ensayos Antitumor por Modelo de Xenoinjerto; Tirosina Quinasa del Receptor Axl
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Protocolos de Quimioterapia Combinada Antineoplásica / Proteínas de Fusión Oncogénica / Carcinoma de Pulmón de Células no Pequeñas / Resistencia a Antineoplásicos / Inhibidores de Proteínas Quinasas / Neoplasias Pulmonares Tipo de estudio: Prognostic_studies Idioma: En Revista: Cancer Sci Año: 2018 Tipo del documento: Article País de afiliación: Japón

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Protocolos de Quimioterapia Combinada Antineoplásica / Proteínas de Fusión Oncogénica / Carcinoma de Pulmón de Células no Pequeñas / Resistencia a Antineoplásicos / Inhibidores de Proteínas Quinasas / Neoplasias Pulmonares Tipo de estudio: Prognostic_studies Idioma: En Revista: Cancer Sci Año: 2018 Tipo del documento: Article País de afiliación: Japón