Your browser doesn't support javascript.
loading
Clinical applications of machine learning in cardiovascular disease and its relevance to cardiac imaging.
Al'Aref, Subhi J; Anchouche, Khalil; Singh, Gurpreet; Slomka, Piotr J; Kolli, Kranthi K; Kumar, Amit; Pandey, Mohit; Maliakal, Gabriel; van Rosendael, Alexander R; Beecy, Ashley N; Berman, Daniel S; Leipsic, Jonathan; Nieman, Koen; Andreini, Daniele; Pontone, Gianluca; Schoepf, U Joseph; Shaw, Leslee J; Chang, Hyuk-Jae; Narula, Jagat; Bax, Jeroen J; Guan, Yuanfang; Min, James K.
Afiliación
  • Al'Aref SJ; Department of Radiology, NewYork-Presbyterian Hospital and Weill Cornell Medicine, New York, NY, USA.
  • Anchouche K; Department of Radiology, NewYork-Presbyterian Hospital and Weill Cornell Medicine, New York, NY, USA.
  • Singh G; Department of Radiology, NewYork-Presbyterian Hospital and Weill Cornell Medicine, New York, NY, USA.
  • Slomka PJ; Departments of Imaging and Medicine and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
  • Kolli KK; Department of Radiology, NewYork-Presbyterian Hospital and Weill Cornell Medicine, New York, NY, USA.
  • Kumar A; Department of Radiology, NewYork-Presbyterian Hospital and Weill Cornell Medicine, New York, NY, USA.
  • Pandey M; Department of Radiology, NewYork-Presbyterian Hospital and Weill Cornell Medicine, New York, NY, USA.
  • Maliakal G; Department of Radiology, NewYork-Presbyterian Hospital and Weill Cornell Medicine, New York, NY, USA.
  • van Rosendael AR; Department of Radiology, NewYork-Presbyterian Hospital and Weill Cornell Medicine, New York, NY, USA.
  • Beecy AN; Department of Radiology, NewYork-Presbyterian Hospital and Weill Cornell Medicine, New York, NY, USA.
  • Berman DS; Departments of Imaging and Medicine and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
  • Leipsic J; Departments of Medicine and Radiology, University of British Columbia, Vancouver, BC, Canada.
  • Nieman K; Departments of Cardiology and Radiology, Stanford University School of Medicine and Cardiovascular Institute, Stanford, CA, USA.
  • Andreini D; Centro Cardiologico Monzino, IRCCS Milan, Italy.
  • Pontone G; Centro Cardiologico Monzino, IRCCS Milan, Italy.
  • Schoepf UJ; Division of Cardiovascular Imaging, Department of Radiology and Radiological Science and Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, SC, USA.
  • Shaw LJ; Department of Radiology, NewYork-Presbyterian Hospital and Weill Cornell Medicine, New York, NY, USA.
  • Chang HJ; Division of Cardiology, Severance Cardiovascular Hospital and Severance Biomedical Science Institute, Yonsei University College of Medicine, Yonsei University Health System, Seoul, South Korea.
  • Narula J; Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
  • Bax JJ; Department of Cardiology, Heart Lung Center, Leiden University Medical Center, Leiden, The Netherlands.
  • Guan Y; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA.
  • Min JK; Department of Radiology, NewYork-Presbyterian Hospital and Weill Cornell Medicine, New York, NY, USA.
Eur Heart J ; 40(24): 1975-1986, 2019 06 21.
Article en En | MEDLINE | ID: mdl-30060039
Artificial intelligence (AI) has transformed key aspects of human life. Machine learning (ML), which is a subset of AI wherein machines autonomously acquire information by extracting patterns from large databases, has been increasingly used within the medical community, and specifically within the domain of cardiovascular diseases. In this review, we present a brief overview of ML methodologies that are used for the construction of inferential and predictive data-driven models. We highlight several domains of ML application such as echocardiography, electrocardiography, and recently developed non-invasive imaging modalities such as coronary artery calcium scoring and coronary computed tomography angiography. We conclude by reviewing the limitations associated with contemporary application of ML algorithms within the cardiovascular disease field.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Enfermedades Cardiovasculares / Técnicas de Imagen Cardíaca / Aprendizaje Automático / Insuficiencia Cardíaca Tipo de estudio: Diagnostic_studies / Prognostic_studies Límite: Humans Idioma: En Revista: Eur Heart J Año: 2019 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Enfermedades Cardiovasculares / Técnicas de Imagen Cardíaca / Aprendizaje Automático / Insuficiencia Cardíaca Tipo de estudio: Diagnostic_studies / Prognostic_studies Límite: Humans Idioma: En Revista: Eur Heart J Año: 2019 Tipo del documento: Article País de afiliación: Estados Unidos