Your browser doesn't support javascript.
loading
Tuned Fabrication of the Aligned and Opened CNT Membrane with Exceptionally High Permeability and Selectivity for Bioalcohol Recovery.
Nano Lett ; 18(10): 6150-6156, 2018 10 10.
Article en En | MEDLINE | ID: mdl-30132675
ABSTRACT
Synthetic membranes usually suffer from a ubiquitous trade-off between permeability and selectivity. Carbon nanotube (CNT)-based hybrid materials have shown attractive properties in high-performance membrane preparation; however, the aggregation of random CNTs in polymer remains a great challenge. Herein, the aligned and open-ended CNT/(polydimethylsiloxane) PDMS membranes are controllably fabricated to form a hamburger-like structure that possesses nanochannels (∼10 nm) in the intermediate layer as well as angstrom cavities in the embedded PDMS. These aligned CNT membranes surpass the filling content limitation of the nonaligned CNT/PDMS membrane (37.4 wt % versus ∼10 wt %), leading to excellent mechanical properties and a multiplying performance increase of mass flux and selectivity for the separation of alcohols. The membranes break the permeability-selectivity trade-off with both parameters remarkably increasing (maximum 9 times) for bioalcohol separation. The established pervaporative-ultrafiltration mechanism indicates that the penetrant molecules preferentially pass through CNT internal nanochannels with increasing membrane permeability, thereby paving a way to nanoscale design of highly efficient channeled membranes for separation application.
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Nano Lett Año: 2018 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Nano Lett Año: 2018 Tipo del documento: Article