Your browser doesn't support javascript.
loading
Optimal soil carbon sampling designs to achieve cost-effectiveness: a case study in blue carbon ecosystems.
Young, Mary A; Macreadie, Peter I; Duncan, Clare; Carnell, Paul E; Nicholson, Emily; Serrano, Oscar; Duarte, Carlos M; Shiell, Glenn; Baldock, Jeff; Ierodiaconou, Daniel.
Afiliación
  • Young MA; School of Life and Environmental Sciences, Centre for Integrative Ecology, Deakin University, Geelong, Victoria, Australia mary.young@deakin.edu.au.
  • Macreadie PI; School of Life and Environmental Sciences, Centre for Integrative Ecology, Deakin University, Geelong, Victoria, Australia.
  • Duncan C; School of Life and Environmental Sciences, Centre for Integrative Ecology, Deakin University, Geelong, Victoria, Australia.
  • Carnell PE; School of Life and Environmental Sciences, Centre for Integrative Ecology, Deakin University, Geelong, Victoria, Australia.
  • Nicholson E; School of Life and Environmental Sciences, Centre for Integrative Ecology, Deakin University, Geelong, Victoria, Australia.
  • Serrano O; School of Science, Centre for Marine Ecosystems Research, Edith Cowan University, Joondalup, Western Australia, Australia.
  • Duarte CM; Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia.
  • Shiell G; BMT Pty Ltd, Perth, Western Australia, Australia.
  • Baldock J; CSIRO Agriculture and Food, Glen Osmond, South Australia, Australia.
  • Ierodiaconou D; School of Life and Environmental Sciences, Centre for Integrative Ecology, Deakin University, Geelong, Victoria, Australia.
Biol Lett ; 14(9)2018 09 26.
Article en En | MEDLINE | ID: mdl-30258032
ABSTRACT
Researchers are increasingly studying carbon (C) storage by natural ecosystems for climate mitigation, including coastal 'blue carbon' ecosystems. Unfortunately, little guidance on how to achieve robust, cost-effective estimates of blue C stocks to inform inventories exists. We use existing data (492 cores) to develop recommendations on the sampling effort required to achieve robust estimates of blue C. Using a broad-scale, spatially explicit dataset from Victoria, Australia, we applied multiple spatial methods to provide guidelines for reducing variability in estimates of soil C stocks over large areas. With a separate dataset collected across Australia, we evaluated how many samples are needed to capture variability within soil cores and the best methods for extrapolating C to 1 m soil depth. We found that 40 core samples are optimal for capturing C variance across 1000's of kilometres but higher density sampling is required across finer scales (100-200 km). Accounting for environmental variation can further decrease required sampling. The within core analyses showed that nine samples within a core capture the majority of the variability and log-linear equations can accurately extrapolate C. These recommendations can help develop standardized methods for sampling programmes to quantify soil C stocks at national scales.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Suelo / Carbono / Monitoreo del Ambiente Tipo de estudio: Health_economic_evaluation País/Región como asunto: Oceania Idioma: En Revista: Biol Lett Asunto de la revista: BIOLOGIA Año: 2018 Tipo del documento: Article País de afiliación: Australia

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Suelo / Carbono / Monitoreo del Ambiente Tipo de estudio: Health_economic_evaluation País/Región como asunto: Oceania Idioma: En Revista: Biol Lett Asunto de la revista: BIOLOGIA Año: 2018 Tipo del documento: Article País de afiliación: Australia