Your browser doesn't support javascript.
loading
Ex vivo induction of regulatory T cells from conventional CD4+ T cells is sensitive to substrate rigidity.
Nataraj, Neha M; Dang, Alex P; Kam, Lance C; Lee, Jounghyun H.
Afiliación
  • Nataraj NM; Department of Biomedical Engineering, Columbia University, New York, New York.
  • Dang AP; Biomedical Graduate Studies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania.
  • Kam LC; Department of Biomedical Engineering, Columbia University, New York, New York.
  • Lee JH; Department of Biomedical Engineering, Columbia University, New York, New York.
J Biomed Mater Res A ; 106(12): 3001-3008, 2018 12.
Article en En | MEDLINE | ID: mdl-30303608
ABSTRACT
The immune system maintains a balance between protection and tolerance. Regulatory T cells (Tregs) function as a vital tolerance mechanism in the immune system to suppress effector immune cells. Additionally, Tregs can be utilized as a form of immunotherapy for autoimmune disorders. As T cells have previously been shown to exhibit sensitivity to the rigidity of an activating substrate upon activation via IL-2 secretion, we herein explore the previously unknown effect of substrate rigidity on the induction of Tregs from conventional naïve mouse CD4+ T cells. Substrates with modulatable rigidities ranging from a hundred kilopascals to a few megapascals were fabricated via poly(dimethylsiloxane). We found that there was a significant increase in Treg induction at lower substrate rigidities (i.e., E ~ 100 kPa) compared to higher rigidity levels (i.e., E ~ 3 MPa). To confirm that this significant difference in induction rate was truly related to T-cell mechanosensing, we administered compound Y-27632 to inhibit myosin contractility. In the presence of Y-27632, the myosin-based contractility was disrupted and, as a result, the difference in Treg induction caused by the substrate rigidity was abrogated. This study demonstrates that mechanosensing is involved in Treg induction and raises questions about the underlying molecular mechanisms involved in this process. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A 106A 3001-3008, 2018.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Materiales Biocompatibles / Linfocitos T CD4-Positivos / Linfocitos T Reguladores / Dimetilpolisiloxanos Tipo de estudio: Diagnostic_studies Límite: Animals Idioma: En Revista: J Biomed Mater Res A Asunto de la revista: ENGENHARIA BIOMEDICA Año: 2018 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Materiales Biocompatibles / Linfocitos T CD4-Positivos / Linfocitos T Reguladores / Dimetilpolisiloxanos Tipo de estudio: Diagnostic_studies Límite: Animals Idioma: En Revista: J Biomed Mater Res A Asunto de la revista: ENGENHARIA BIOMEDICA Año: 2018 Tipo del documento: Article