Your browser doesn't support javascript.
loading
Acid Sphingomyelinase Inhibition Attenuates Cell Death in Mechanically Ventilated Newborn Rat Lung.
Yeganeh, Behzad; Lee, Joyce; Bilodeau, Claudia; Lok, Irene; Ermini, Leonardo; Ackerley, Cameron; Caniggia, Isabella; Tibboel, Jeroen; Kroon, Andre; Post, Martin.
Afiliación
  • Yeganeh B; 1 Translational Medicine Program, Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, Ontario, Canada.
  • Lee J; 1 Translational Medicine Program, Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, Ontario, Canada.
  • Bilodeau C; 2 Institute of Medical Science and.
  • Lok I; 1 Translational Medicine Program, Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, Ontario, Canada.
  • Ermini L; 3 Department of Laboratory Medicine and Pathobiology, University of Toronto, Ontario, Canada.
  • Ackerley C; 1 Translational Medicine Program, Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, Ontario, Canada.
  • Caniggia I; 1 Translational Medicine Program, Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, Ontario, Canada.
  • Tibboel J; 1 Translational Medicine Program, Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, Ontario, Canada.
  • Kroon A; 4 Mount Sinai Hospital, the Lunenfeld-Tanenbaum Research Institute, Toronto, Ontario, Canada; and.
  • Post M; 1 Translational Medicine Program, Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, Ontario, Canada.
Am J Respir Crit Care Med ; 199(6): 760-772, 2019 03 15.
Article en En | MEDLINE | ID: mdl-30326731
ABSTRACT
RATIONALE Premature infants subjected to mechanical ventilation (MV) are prone to lung injury that may result in bronchopulmonary dysplasia. MV causes epithelial cell death and halts alveolar development. The exact mechanism of MV-induced epithelial cell death is unknown.

OBJECTIVES:

To determine the contribution of autophagy to MV-induced epithelial cell death in newborn rat lungs.

METHODS:

Newborn rat lungs and fetal rat lung epithelial (FRLE) cells were exposed to MV and cyclic stretch, respectively, and were then analyzed by immunoblotting and mass spectrometry for autophagy, apoptosis, and bioactive sphingolipids. MEASUREMENTS AND MAIN

RESULTS:

Both MV and stretch first induce autophagy (ATG 5-12 [autophagy related 5-12] and LC3B-II [microtubule-associated proteins 1A/1B light chain 3B-II] formation) followed by extrinsic apoptosis (cleaved CASP8/3 [caspase-8/3] and PARP [poly(ADP-ribose) polymerase] formation). Stretch-induced apoptosis was attenuated by inhibiting autophagy. Coimmunoprecipitation revealed that stretch promoted an interaction between LC3B and the FAS (first apoptosis signal) cell death receptor in FRLE cells. Ceramide levels, in particular C16 ceramide, were rapidly elevated in response to ventilation and stretch, and C16 ceramide treatment of FRLE cells induced autophagy and apoptosis in a temporal pattern similar to that seen with MV and stretch. SMPD1 (sphingomyelin phosphodiesterase 1) was activated by ventilation and stretch, and its inhibition prevented ceramide production, LC3B-II formation, LC3B/first apoptosis signal interaction, caspase-3 activation, and, ultimately, FLRE cell death. SMPD1 inhibition also attenuated ventilation-induced autophagy and apoptosis in newborn rats.

CONCLUSIONS:

Ventilation-induced ceramides promote autophagy-mediated cell death, and identifies SMPD1 as a potential therapeutic target for the treatment of ventilation-induced lung injury in newborns.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Respiración Artificial / Esfingomielina Fosfodiesterasa / Recién Nacido / Muerte Celular / Células Epiteliales / Pulmón Límite: Animals / Humans Idioma: En Revista: Am J Respir Crit Care Med Asunto de la revista: TERAPIA INTENSIVA Año: 2019 Tipo del documento: Article País de afiliación: Canadá

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Respiración Artificial / Esfingomielina Fosfodiesterasa / Recién Nacido / Muerte Celular / Células Epiteliales / Pulmón Límite: Animals / Humans Idioma: En Revista: Am J Respir Crit Care Med Asunto de la revista: TERAPIA INTENSIVA Año: 2019 Tipo del documento: Article País de afiliación: Canadá