Your browser doesn't support javascript.
loading
Nonequilibrium associative retrieval of multiple stored self-assembly targets.
Bisker, Gili; England, Jeremy L.
Afiliación
  • Bisker G; Physics of Living Systems Group, Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139.
  • England JL; Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel.
Proc Natl Acad Sci U S A ; 115(45): E10531-E10538, 2018 11 06.
Article en En | MEDLINE | ID: mdl-30348806
Many biological systems rely on the ability to self-assemble different target structures using the same set of components. Equilibrium self-assembly suffers from a limited capacity in such cases, due to an increasing number of decoy states that grows rapidly with the number of targets encoded. Moreover, improving the kinetic stability of a target at equilibrium carries the price of introducing kinetic traps, leading to slower assembly. Using a toy physical model of interacting particles, we demonstrate that local driving can improve both the assembly time and kinetic stability of multitarget self-assembly, as well as reduce fluctuations around the target configuration. We further show that the local drive can result in a steady-state probability distribution over target structures that deviates from the Boltzmann distribution in a way that depends on the types of interactions that stabilize the targets. Our results illustrate the role that nonequilibrium driving plays in overcoming tradeoffs that are inherent to equilibrium assemblies.
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Tipo de estudio: Risk_factors_studies Idioma: En Revista: Proc Natl Acad Sci U S A Año: 2018 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Tipo de estudio: Risk_factors_studies Idioma: En Revista: Proc Natl Acad Sci U S A Año: 2018 Tipo del documento: Article