Your browser doesn't support javascript.
loading
Quantum chemistry reveals thermodynamic principles of redox biochemistry.
Jinich, Adrian; Flamholz, Avi; Ren, Haniu; Kim, Sung-Jin; Sanchez-Lengeling, Benjamin; Cotton, Charles A R; Noor, Elad; Aspuru-Guzik, Alán; Bar-Even, Arren.
Afiliación
  • Jinich A; Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, United States of America.
  • Flamholz A; Division of Infectious Diseases, Weill Department of Medicine, Weill-Cornell Medical College, New York, New York, United States of America.
  • Ren H; Department of Molecular and Cellular Biology, University of California, Berkeley, Berkeley, California, United States of America.
  • Kim SJ; Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, United States of America.
  • Sanchez-Lengeling B; Center for Systems Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America.
  • Cotton CAR; Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts, United States of America.
  • Noor E; Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, United States of America.
  • Aspuru-Guzik A; Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany.
  • Bar-Even A; Institute of Molecular Systems Biology, ETH Zurich, Zürich, Switzerland.
PLoS Comput Biol ; 14(10): e1006471, 2018 10.
Article en En | MEDLINE | ID: mdl-30356318
ABSTRACT
Thermodynamics dictates the structure and function of metabolism. Redox reactions drive cellular energy and material flow. Hence, accurately quantifying the thermodynamics of redox reactions should reveal design principles that shape cellular metabolism. However, only few redox potentials have been measured, and mostly with inconsistent experimental setups. Here, we develop a quantum chemistry approach to calculate redox potentials of biochemical reactions and demonstrate our method predicts experimentally measured potentials with unparalleled accuracy. We then calculate the potentials of all redox pairs that can be generated from biochemically relevant compounds and highlight fundamental trends in redox biochemistry. We further address the question of why NAD/NADP are used as primary electron carriers, demonstrating how their physiological potential range fits the reactions of central metabolism and minimizes the concentration of reactive carbonyls. The use of quantum chemistry can revolutionize our understanding of biochemical phenomena by enabling fast and accurate calculation of thermodynamic values.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Oxidación-Reducción / Termodinámica / Fenómenos Bioquímicos / Modelos Químicos Tipo de estudio: Prognostic_studies Idioma: En Revista: PLoS Comput Biol Asunto de la revista: BIOLOGIA / INFORMATICA MEDICA Año: 2018 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Oxidación-Reducción / Termodinámica / Fenómenos Bioquímicos / Modelos Químicos Tipo de estudio: Prognostic_studies Idioma: En Revista: PLoS Comput Biol Asunto de la revista: BIOLOGIA / INFORMATICA MEDICA Año: 2018 Tipo del documento: Article País de afiliación: Estados Unidos