Your browser doesn't support javascript.
loading
Inhibiting the Evolution of Antibiotic Resistance.
Ragheb, Mark N; Thomason, Maureen K; Hsu, Chris; Nugent, Patrick; Gage, John; Samadpour, Ariana N; Kariisa, Ankunda; Merrikh, Christopher N; Miller, Samuel I; Sherman, David R; Merrikh, Houra.
Afiliación
  • Ragheb MN; Department of Microbiology, University of Washington, Seattle, WA, USA; Molecular and Cellular Biology Graduate Program and Medical Scientist Training Program, University of Washington, Seattle, WA, USA.
  • Thomason MK; Department of Microbiology, University of Washington, Seattle, WA, USA.
  • Hsu C; Department of Microbiology, University of Washington, Seattle, WA, USA.
  • Nugent P; Department of Microbiology, University of Washington, Seattle, WA, USA.
  • Gage J; Department of Microbiology, University of Washington, Seattle, WA, USA.
  • Samadpour AN; Department of Microbiology, University of Washington, Seattle, WA, USA.
  • Kariisa A; Department of Microbiology, University of Washington, Seattle, WA, USA.
  • Merrikh CN; Department of Microbiology, University of Washington, Seattle, WA, USA.
  • Miller SI; Department of Microbiology, University of Washington, Seattle, WA, USA; Department of Genome Sciences, University of Washington, Seattle, WA, USA.
  • Sherman DR; Center for Infectious Disease Research, Seattle, WA, USA; Interdiscipinary Program of Pathobiology, Department of Global Health, University of Washington, Seattle, WA, USA.
  • Merrikh H; Department of Microbiology, University of Washington, Seattle, WA, USA; Department of Genome Sciences, University of Washington, Seattle, WA, USA. Electronic address: merrikh@uw.edu.
Mol Cell ; 73(1): 157-165.e5, 2019 01 03.
Article en En | MEDLINE | ID: mdl-30449724
Efforts to battle antimicrobial resistance (AMR) are generally focused on developing novel antibiotics. However, history shows that resistance arises regardless of the nature or potency of new drugs. Here, we propose and provide evidence for an alternate strategy to resolve this problem: inhibiting evolution. We determined that the DNA translocase Mfd is an "evolvability factor" that promotes mutagenesis and is required for rapid resistance development to all antibiotics tested across highly divergent bacterial species. Importantly, hypermutator alleles that accelerate AMR development did not arise without Mfd, at least during evolution of trimethoprim resistance. We also show that Mfd's role in AMR development depends on its interactions with the RNA polymerase subunit RpoB and the nucleotide excision repair protein UvrA. Our findings suggest that AMR development can be inhibited through inactivation of evolvability factors (potentially with "anti-evolution" drugs)-in particular, Mfd-providing an unexplored route toward battling the AMR crisis.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Bacterias / Proteínas Bacterianas / Factores de Transcripción / Evolución Molecular / Farmacorresistencia Bacteriana / Antibacterianos Tipo de estudio: Prognostic_studies Límite: Animals / Humans Idioma: En Revista: Mol Cell Asunto de la revista: BIOLOGIA MOLECULAR Año: 2019 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Bacterias / Proteínas Bacterianas / Factores de Transcripción / Evolución Molecular / Farmacorresistencia Bacteriana / Antibacterianos Tipo de estudio: Prognostic_studies Límite: Animals / Humans Idioma: En Revista: Mol Cell Asunto de la revista: BIOLOGIA MOLECULAR Año: 2019 Tipo del documento: Article País de afiliación: Estados Unidos