Your browser doesn't support javascript.
loading
Probing Atomic Distributions in Mono- and Bimetallic Nanoparticles by Supervised Machine Learning.
Timoshenko, Janis; Wrasman, Cody J; Luneau, Mathilde; Shirman, Tanya; Cargnello, Matteo; Bare, Simon R; Aizenberg, Joanna; Friend, Cynthia M; Frenkel, Anatoly I.
Afiliación
  • Timoshenko J; Department of Materials Science and Chemical Engineering , Stony Brook University , Stony Brook , New York 11794 , United States.
  • Wrasman CJ; Department of Chemical Engineering and SUNCAT Center for Interface Science and Catalysis , Stanford University , Stanford , California 94305 , United States.
  • Cargnello M; Department of Chemical Engineering and SUNCAT Center for Interface Science and Catalysis , Stanford University , Stanford , California 94305 , United States.
  • Bare SR; Stanford Synchrotron Radiation Lightsource , SLAC National Accelerator Laboratory , Menlo Park , California 94025 , United States.
  • Frenkel AI; Department of Materials Science and Chemical Engineering , Stony Brook University , Stony Brook , New York 11794 , United States.
Nano Lett ; 19(1): 520-529, 2019 01 09.
Article en En | MEDLINE | ID: mdl-30501196
Properties of mono- and bimetallic metal nanoparticles (NPs) may depend strongly on their compositional, structural (or geometrical) attributes, and their atomic dynamics, all of which can be efficiently described by a partial radial distribution function (PRDF) of metal atoms. For NPs that are several nanometers in size, finite size effects may play a role in determining crystalline order, interatomic distances, and particle shape. Bimetallic NPs may also have different compositional distributions than bulk materials. These factors all render the determination of PRDFs challenging. Here extended X-ray absorption fine structure (EXAFS) spectroscopy, molecular dynamics simulations, and supervised machine learning (artificial neural-network) method are combined to extract PRDFs directly from experimental data. By applying this method to several systems of Pt and PdAu NPs, we demonstrate the finite size effects on the nearest neighbor distributions, bond dynamics, and alloying motifs in mono- and bimetallic particles and establish the generality of this approach.
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Nano Lett Año: 2019 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Nano Lett Año: 2019 Tipo del documento: Article País de afiliación: Estados Unidos