Your browser doesn't support javascript.
loading
Tree-Based Learning of Regulatory Network Topologies and Dynamics with Jump3.
Huynh-Thu, Vân Anh; Sanguinetti, Guido.
Afiliación
  • Huynh-Thu VA; Department of Electrical Engineering and Computer Science, University of Liège, Liège, Belgium. vahuynh@uliege.be.
  • Sanguinetti G; School of Informatics, University of Edinburgh, Edinburgh, UK.
Methods Mol Biol ; 1883: 217-233, 2019.
Article en En | MEDLINE | ID: mdl-30547402
Inference of gene regulatory networks (GRNs) from time series data is a well-established field in computational systems biology. Most approaches can be broadly divided in two families: model-based and model-free methods. These two families are highly complementary: model-based methods seek to identify a formal mathematical model of the system. They thus have transparent and interpretable semantics but rely on strong assumptions and are rather computationally intensive. On the other hand, model-free methods have typically good scalability. Since they are not based on any parametric model, they are more flexible than model-based methods, but also less interpretable.In this chapter, we describe Jump3, a hybrid approach that bridges the gap between model-free and model-based methods. Jump3 uses a formal stochastic differential equation to model each gene expression but reconstructs the GRN topology with a nonparametric method based on decision trees. We briefly review the theoretical and algorithmic foundations of Jump3, and then proceed to provide a step-by-step tutorial of the associated software usage.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Árboles de Decisión / Biología de Sistemas / Redes Reguladoras de Genes / Aprendizaje Automático / Modelos Genéticos Tipo de estudio: Prognostic_studies Idioma: En Revista: Methods Mol Biol Asunto de la revista: BIOLOGIA MOLECULAR Año: 2019 Tipo del documento: Article País de afiliación: Bélgica

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Árboles de Decisión / Biología de Sistemas / Redes Reguladoras de Genes / Aprendizaje Automático / Modelos Genéticos Tipo de estudio: Prognostic_studies Idioma: En Revista: Methods Mol Biol Asunto de la revista: BIOLOGIA MOLECULAR Año: 2019 Tipo del documento: Article País de afiliación: Bélgica