Your browser doesn't support javascript.
loading
Wavelet Denoising of High-Bandwidth Nanopore and Ion-Channel Signals.
Shekar, Siddharth; Chien, Chen-Chi; Hartel, Andreas; Ong, Peijie; Clarke, Oliver B; Marks, Andrew; Drndic, Marija; Shepard, Kenneth L.
Afiliación
  • Chien CC; Department of Physics and Astronomy , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States.
  • Clarke OB; Department of Physiology and Cellular Biophysics , Columbia University , New York , New York 10032 , United States.
  • Marks A; Department of Physiology and Cellular Biophysics , Columbia University , New York , New York 10032 , United States.
  • Drndic M; Department of Physics and Astronomy , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States.
Nano Lett ; 19(2): 1090-1097, 2019 02 13.
Article en En | MEDLINE | ID: mdl-30601669
ABSTRACT
Recent work has pushed the noise-limited bandwidths of solid-state nanopore conductance recordings to more than 5 MHz and of ion channel conductance recordings to more than 500 kHz through the use of integrated complementary metal-oxide-semiconductor (CMOS) integrated circuits. Despite the spectral spread of the pulse-like signals that characterize these recordings when a sinusoidal basis is employed, Bessel filters are commonly used to denoise these signals to acceptable signal-to-noise ratios (SNRs) at the cost of losing many of the faster temporal features. Here, we report improvements to the SNR that can be achieved using wavelet denoising instead of Bessel filtering. When combined with state-of-the-art high-bandwidth CMOS recording instrumentation, we can reduce baseline noise levels by over a factor of 4 compared to a 2.5 MHz Bessel filter while retaining transient properties in the signal comparable to this filter bandwidth. Similarly, for ion-channel recordings, we achieve a temporal response better than a 100 kHz Bessel filter with a noise level comparable to that achievable with a 25 kHz Bessel filter. Improvements in SNR can be used to achieve robust statistical analyses of these recordings, which may provide important insights into nanopore translocation dynamics and mechanisms of ion-channel function.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Semiconductores / Electrónica / Análisis de Ondículas / Nanoporos / Canales Iónicos Límite: Humans Idioma: En Revista: Nano Lett Año: 2019 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Semiconductores / Electrónica / Análisis de Ondículas / Nanoporos / Canales Iónicos Límite: Humans Idioma: En Revista: Nano Lett Año: 2019 Tipo del documento: Article